# 440 FIRST STREET, NW WASHIGNTON, D.C.



TECHNICAL REPORT III

YEMI OSITELU STRUCTURAL OPTION ADVISOR | ALY SAID 16 OCTOBER 2015 October 15, 2015

Aly Said Structural Thesis Advisor The Pennsylvania State University aly.said@engr.psu.edu

Dear Dr. Said,

The following technical report fulfills the requirements specified in the structural Technical Report II assigned by the faculty for senior thesis.

Technical Report III includes;

- I. A detailed structural analysis of the loads used in the construction and renovation
- II. Member spot checks for gravity loads in a typical bay
- III. A detailed analysis of alternative framing systems which are;
  - Reinforced two-way flat-slab with edge beam
  - Structural steel framing w/ composite joists
  - Non-composite wide flange steel frame on composite deck
- IV. Comparison of the existing and the alternate framing systems

Thank you for reviewing this report. I will kindly appreciate your feedback.

Sincerely,

Yemi A. Ositelu.

**Enclosed: Technical Report III** 

# **EXECUTIVE SUMMARY**

440 First Street is a mixed use building located in Washington, D.C. The existing 8-story building, constructed in the early 80's began renovation in 2012 and was completed in 2013. Three stories were added to the building, including a penthouse, resulting in a 20.6 foot increase in building height and a total gross square footage of about 142000 GSF. The new 10-story architectural design provided a seamless transformation of the existing building into a more modern, state-of-the-art building, well on its way to a platinum LEED certification.

The existing building, floors 1 to 7, comprises of a frame assembly of cast-in-place concrete structural slabs and column, with low story heights. The foundation system is mainly supported by the spread footings. The new, additional framing (8th floor and above) uses composite framing, with wide flange steel shapes used in the majority of the added structural system.

Building codes and design standards typically used in the project include the ASCE and the IBC, with gravity, lateral, and seismic loads all considered.

This report will cover the codes, design loads, existing framing, framing renovations and additional framing in more detail and in a wider perspective.

# TABLE OF CONTENTS

| Executive Summary                     | Page 1  |
|---------------------------------------|---------|
| Building Abstract                     | Page 3  |
| Site and Location Plan                | Page 4  |
| List of documents used in the project | Page 5  |
| Gravity Loads                         | Page 6  |
| Roof Loads                            | Page 6  |
| Snow Loads                            | Page 9  |
| Floor Loads                           | Page 10 |
| Exterior Wall Loads                   | Page 13 |
| Lateral Loads                         | Page 17 |
| Wind Loads                            | Page 17 |
| Seismic Loads                         | Page 26 |
| Member spot checks for gravity loads  | Page 31 |
| Overview of the alternative system    | Page 42 |
| Alternative system #1                 | Page 43 |
| Alternative system #2                 | Page 60 |
| Alternative system #3                 | Page 69 |
| System comparisons                    | Page 75 |

## **440 FIRST STREET**

#### GENERAL DESCRIPTION

LOCATION OCCUPANCY

NUMBER OF STORIES ACTUAL COST INFO. WASHINGTON, D.C. OFFICE/ RETAIL 141,929 SQUARE FT. 11 (ABOVE GRADE) \$20,000,000 (RENO.)

#### PROJECT TEAM NEW CONSTRUCTION

OWNER
GENERAL CONTRACTOR
ARCHITECT
CIVIL ENGINEER
STRUCTURAL ENGINEER
MEP ENGINEER
LIGHTING CONSULTANT
SPECS. WRITER
LEFD CONSULTANT

FP FIRST STREET, LLC
SIGAL CONSTRUCTION
FOX ARCHITECTS
VIKA
RGA
VANDERWEIL
C.M KLING & ASSOC.
BETHEL SPECS.
LORAX
AON RISK SOLUTIONS

#### EXISTING CONSTRUCTION

**ARCHITECTURE** 

in downtown Washington, D.C. The existing 8-story

440 First Street, NW, is located between D and E Streets

building was constructed in 1982 and renovation was

initiated in 2012. It has 10 stories + a mechanical pent-

house, and there are two existing below grade park-

ing garages, which were repaired and utilized as a valet parking facility. The new façade is a com-

bined glass-and-metal curtain wall system, which al-

ARCHITECT
STRUCTURAL ENGINEER
MECHANICAL &
ELECTRICAL

natural daylighting.

CODE CONSULTANT

VLASTMIL KOUBEK, AIA BASKAM & JURCZYK THE OFFICE OF LEE KENDRICK

#### STRUCTURAL SYSTEM

YEMI A. OSITELU | STRUCTURAL OPTION

ADVISOR: DR. ALY SAID

#### FRAMING SYSTEM

EXING Cast-in-place concrete with two-way structural concrete slabs and reinforced concrete columns and beams.

NEW Composite steel framing with 5 1/4" slabs

#### LATERAL SYSTEM

EXISTING Slab-Column Concrete Frames

NEW Steel Moment Frames

#### FOUNDATION

Walls and columns are supported by spread foolings.

#### **MECHANICAL SYSTEM**

lows for outstanding views and more importantly,

During the renovation of 440 First Street, the primary mechanical (DOAS) systems were replaced and resulted in a 25% reduction in energy usage. It consists of 3 mechanical rooms housed in the penthouse and 2 cooling towers on the penthouse roof.

Openings were created in the steel beams and girders

#### SUSTAINABILITY

- . Majority of the building 's structural elements will be reused
- Green Roof will have local plants that require minimal watering and also reduces storm water overflow and minimizes "heat island" effect
- Recycled materials are used and are obtained regionally
- . The building has achieved LEED Platinum Certification

#### LIGHTING/ELECTRICAL SYSYTEM

The curtain wall and the many windows in the façade provide the building with natural daylighting, improving energy efficiency.

The interiors are well lit with LED fixtures and other various energy efficient light fixtures





ALLMAGES COLETSEY OF JEFF GOLDBERG OF ERTO PHOTOGRAPHY FOR POX ARCHITECTS

## 440 FIRST STREET, NW

# SITE AND LOCATION PLAN



#### DOCUMENTS USED DURING THE PREPARATION OF REPORT

The following is a list of the structural codes and design standards used in the structural analysis of 440 First Street, NW, Washington, D.C.

- I. International Code Council
  - o International Building Code 2006
- II. American Society of Civil Engineers
  - ASCE 7-05 &10: Minimum Design Loads for Buildings and Other Structures
- III. American Concrete Institute
  - ACI 318-11: Building Code Requirements for Structural Concrete
- IV. American Institute of Steel Construction
  - o AISC 14th Edition: Steel Construction Manual
- V. Vulcraft Deck Catalog
- VI. First Edition, Standard Specification for Composite Steel Joists
- VII. Reinforced Concrete Mechanics and Design Textbook
- VIII. Previous AE Course Notes

# **GRAVITY LOADS**

#### Roof Loads

This section includes the calculations of the penthouse and main roof loads; dead, roof live and snow loads.

Figure 3 and Figure 4 show cross-sections through the main roof and penthouse roof respectively.



Figure 3: Section Detail At Main Roof Level



Figure 4: Section Detail At Penthouse Roof Level

|                                                                     | GRAVITY LOADS                                                                                         | TROOF!                                                            |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                     | TYPICAL ROOF BAY LOADING CO                                                                           |                                                                   |
| 8 8 8                                                               | PENTHOUSE ROOF                                                                                        | [#29] DAOL                                                        |
| 0 SHEETS — 6 SOURRES<br>ON SHEETS — 5 SQUARES<br>ON SHEETS — FILLER | JOIST BEAM ALLOWANCE<br>ROOF DECKING                                                                  | 10 21                                                             |
| 8-0236 — 100<br>3-0237 — 200<br>3-0137 — 200                        | MAIN PENTHOUSE FLOOR LOOF                                                                             | LOAD[PSF]                                                         |
| COMET                                                               | 31/4" LW CONC OVER 2" DEEP METAL DECK JOIST BEAM ALLOWANCE 4" RIGID INSULATION CEILING NEP SPRINKLERS | 42<br>103/5/5m<br>25<br>103                                       |
|                                                                     | ROOF TOP CONCRETE PANERS                                                                              | 103                                                               |
|                                                                     | TYPICAL ROOF BAY LOADING CL                                                                           | INEZ                                                              |
|                                                                     | CODE MINIMUM IS (20 PSE) AS PER FOR POOFS, ORDINARY FLAT                                              | DESIGN VALUES ASCE 7-05 TABLE 4-1                                 |
|                                                                     | MAIN PENTHOUSE FLOOR POOF -  (ODE MINIMUM IS (100 PSE) AS DER  FOR ROOFS USEN FOR ROOF GARD           | 100 PSF [DESIGN VALUE] ASCT 7-05 TABLE 0-1 ENS OR ASSEMBLY PROSES |
|                                                                     | NOTE: SHEET SO- OL REQUIRES THA<br>BE USED FOR AREAS LARGER                                           | T SNOW LOAD SHOULD                                                |
|                                                                     |                                                                                                       |                                                                   |
| 1                                                                   |                                                                                                       |                                                                   |



#### **GRAVITY LOADS**

#### Floor Loads

This section includes calculations of dead and live loads for the floors of the original cast-in-place concrete design and the new addition.

Figure 5 shows a section through a typical cast-in-place concrete slab in the existing building, and Figure 6 shows a section through a typical new floor.



Figure 5: Section Detail Through Typical Existing Floor



Figure 6: Section Detail Through Typical New Floor

|                                                                                   | Tech-Report 2                                                                                  | Yemi A. Ositelu                                   |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| 0                                                                                 | CRAVITY LOADS                                                                                  |                                                   |  |
| 5 SQUARES<br>6 BQUARES<br>5 SQUARES<br>FILLER                                     | CAST-IN- THACE CONCRETE \$LOOK                                                                 | LOAD CPSF)                                        |  |
| 50 SHEETS — 5 SO<br>100 SHEETS — 6 BO<br>200 SHEETS — 5 SO<br>200 SHEETS — 6 FILL | CEILING  WEP SOILWKLERS                                                                        | 80 15 m 15 m                                      |  |
| 3-0296 — 56<br>3-0296 — 100<br>3-0287 — 200<br>3-0197 — 200                       | TOTAL LOAD (7" SLAB) = TOTAL LOAD (9% SLAB) =                                                  | 108 ( Controls                                    |  |
| COMET                                                                             | STRUCTURAL STEEL TRAMED FLOORS                                                                 | LOAD (PS#)                                        |  |
|                                                                                   | 314 LW CONC OVER 2" DEEP METAL DECK<br>BEAM GIRDER ALLOWANCE                                   | 425555<br>1500<br>80                              |  |
| 0                                                                                 | SPRINKLERS                                                                                     | 80                                                |  |
|                                                                                   | TYPICAL FLOOR BAY LOADING CL                                                                   |                                                   |  |
|                                                                                   | LIVE LOAD REDUCTION APPLIED AS                                                                 | LOAD (PSE)   (ODE MICHIGAN                        |  |
|                                                                                   | OFFICE + PARTITIONS LOBBIES / STAIRS / EXITS PENTHOUSE FLOOR CORRIDORS ABOVE 1ST FLOOR PARKING | 100<br>100<br>100<br>100<br>100<br>40<br>50<br>40 |  |
|                                                                                   |                                                                                                |                                                   |  |
| (0)                                                                               |                                                                                                |                                                   |  |
|                                                                                   | ±5                                                                                             |                                                   |  |

# **EXTERIOR WALL LOADS**

This section includes calculations of the exterior wall loads.

Figure 7 shows a cross-section of typical exterior wall detail, and Figure 8 shows a cross-section through the curtain wall on the east façade of the building.



Figure 7: Section Detail Of A Typical Exterior Wall



Figure 8: Section Detail Through The Curtain Wall

Notes

- I. Weights of building materials shown in cross-section were assumed using typical weights of materials.
- II. The north, south and west façades consist of windows as well as masonry, but the greatest wall load will occur through a fully face masonry section.

#### Load Path

Load is typically carried by the composite deck. The deck transfers load to the steel wide flange members and concrete beams, which then transfers the load to the steel/concrete columns. The load is ultimately transferred to the foundation



#### LATERAL LOADS

#### Wind Loads

This section includes wind load calculations for 440 First Street in the two orthogonal directions, according to ASCE 7-05: Chapter 6.5; Method 2.

Microsoft Excel was used in programming equations for optimum efficiency.

#### Notes

- I. Cp values were calculated through interpolation of values in Figure 6.6 of the ASCE 7-05: Chapter 6.5
- II. The velocity pressure exposure coefficients for the building at the different heights are shown in Table 1 below
  - Kz values are obtained through interpolation of values in
     Table 6-3 of ASCE 7-05: Chapter 6, using Exposure B Case 2.

**TABLE 1: Velocity Pressure Exposure Coefficients** 

| Height (ft) | Kz   | qz or qh |
|-------------|------|----------|
| 15          | 0.57 | 10.05    |
| 25.33       | 0.66 | 11.63    |
| 35.67       | 0.73 | 12.87    |
| 46          | 0.79 | 13.92    |
| 56.33       | 0.84 | 14.81    |
| 66.67       | 0.88 | 15.51    |
| 77          | 0.92 | 16.22    |
| 87.75       | 0.95 | 16.74    |
| 98.5        | 0.99 | 17.45    |
| 109.25      | 1.01 | 17.8     |
| 118.5       | 1.04 | 18.33    |
| 127.25      | 1.06 | 18.68    |

|                                         | Tech Report 2 Year & Osifelia                                                         |
|-----------------------------------------|---------------------------------------------------------------------------------------|
| 0                                       | LATERAL LOAD - WIND                                                                   |
|                                         | ASCE 7-05: CHAPTER G.5; METHOD 2 - ANALYTICAL DESIGN PROCEDURE FROM SECTION G.5.3     |
| SOUARES<br>SOUARES<br>SOUARES<br>FILLER | WIND FORCE DETERMINATION - [N-S DIRECTION]                                            |
| 1111                                    | 1. Building Information                                                               |
| SHEETS<br>SHEETS<br>SHEETS              | B = 87' L= 160.25' h= 118.5'                                                          |
| 00000                                   | 2 Basic Wind Speed (V) - 90 MPH [FIG G-1]                                             |
| 3-0236<br>3-0236<br>3-0237<br>3-0137    | 3. Directionality tactor (Kd) - 0.85 [TABLE 6-4]                                      |
|                                         | 4. Determining the Importance Factor (I)                                              |
| COMET                                   | Occupancy Category - I [TABLE 1-1]<br>Importance Factor - 1 [TABLE 6-1]               |
|                                         | 5. Exposure Category - B [50-01 OF DRAWINGS]                                          |
|                                         | G. YELOCITY PRESSURE EXPOSURE COEFFICIENT                                             |
|                                         | + Using EXPOSURE B; CASE 2 + OR MW = RS<br>+ Kz values obtained through intempolation |
| **                                      | + For Breakdown, See TABLE 1                                                          |
|                                         | 7. TOPOGRAPHIC FACTOR (KZ+) - 1-0 [SO-05 OF DRAWINGS]                                 |
|                                         | 8. QUST EFFECT FACTOR (Gf) - 0.85 [SEC 6.5.8.1]                                       |
|                                         | 9. ENCLOSURE CLASSIFICATION - Enclosed [SEC 6.5.9]                                    |
|                                         | 10. Internal Pressure Coefficient                                                     |
|                                         | acp = +/- 0.18 [#1a.6-5]                                                              |
|                                         |                                                                                       |
| 0                                       |                                                                                       |
|                                         |                                                                                       |
|                                         |                                                                                       |
|                                         |                                                                                       |



**TABLE 2: Wind Pressures in the North-South Direction** 

|                        |        |       | Wind Pr | essure | Chart ( | N-S)   |                      |                  |
|------------------------|--------|-------|---------|--------|---------|--------|----------------------|------------------|
| Location               | Z      | qz or | Ср      | Gf     | Gcpi    | qiGCpi | Net Pres             | ssure (PSF)      |
|                        |        | qh    |         |        |         |        | qzGfCp-<br>qi(+Gcpi) | qzGfCp-qi(-Gcpi) |
| Windward               | 15     | 10.05 | 0.8     | 0.85   | 0.18    | 1.809  | 5.03                 | 8.64             |
|                        | 25.33  | 11.63 | 0.8     | 0.85   | 0.18    | 2.0934 | 5.82                 | 10.00            |
|                        | 35.67  | 12.87 | 0.8     | 0.85   | 0.18    | 2.3166 | 6.44                 | 11.07            |
|                        | 46     | 13.92 | 0.8     | 0.85   | 0.18    | 2.5056 | 6.96                 | 11.97            |
|                        | 56.33  | 14.81 | 0.8     | 0.85   | 0.18    | 2.6658 | 7.41                 | 12.74            |
|                        | 66.67  | 15.51 | 0.8     | 0.85   | 0.18    | 2.7918 | 7.76                 | 13.34            |
|                        | 77     | 16.22 | 0.8     | 0.85   | 0.18    | 2.9196 | 8.11                 | 13.95            |
|                        | 87.75  | 16.74 | 0.8     | 0.85   | 0.18    | 3.0132 | 8.37                 | 14.40            |
|                        | 98.5   | 17.45 | 0.8     | 0.85   | 0.18    | 3.141  | 8.73                 | 15.01            |
|                        | 109.25 | 17.8  | 0.8     | 0.85   | 0.18    | 3.204  | 8.90                 | 15.31            |
|                        | 118.5  | 18.33 | 0.8     | 0.85   | 0.18    | 3.2994 | 9.17                 | 15.76            |
| Leeward                | All    | 18.68 | -0.325  | 0.85   | 0.18    | 3.3624 | -8.52                | -1.80            |
| Side                   | All    | 18.68 | -0.7    | 0.85   | 0.18    | 3.3624 | -14.48               | -7.75            |
| Roof (0 to 59.25)      | 118.5  | 18.68 | -0.98   | 0.85   | 0.18    | 3.3624 | -18.92               | -12.20           |
| Roof (59.25 to 118.5)  | 118.5  | 18.68 | -0.8    | 0.85   | 0.18    | 3.3624 | -16.06               | -9.34            |
| Roof (118.5 to 160.25) | 118.5  | 18.68 | -0.6    | 0.85   | 0.18    | 3.3624 | -12.89               | -6.16            |
| Low Parapet WW         | 110.5  | 17.98 |         |        | 1.5     | 26.97  |                      | 26.97            |
| Low Parapet LW         | 110.5  | 17.98 |         |        | -1.0    | -17.98 |                      | -17.98           |
| High Parapet WW        | 127.25 | 18.68 |         |        | 1.5     | 28.02  |                      | 28.02            |
| High Parapet LW        | 127.25 | 18.68 |         |        | -1.0    | -18.68 |                      | -18.68           |

|                                  | Tech Report 2 Yemi A-Osifelu                                                                                                                                                       |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                | WIND FORCE DETERMINATION [ E-W DIRECTION]                                                                                                                                          |
|                                  | 1. Building Intermation                                                                                                                                                            |
| SQUARES<br>SQUARES<br>SQUARES    | 8 = 160.25' L= 87' h= 118.5'                                                                                                                                                       |
| 5 80U                            | 2. Basic Wind Speed (N) - 90MPH [FIG 6-1]                                                                                                                                          |
| EETS<br>EETS<br>EETS             | 3 Directionality Factor (Kd) - 0.85 ETABLE 6-4]                                                                                                                                    |
| 200 SHI                          | 4. Determining the Importance Factor (I)                                                                                                                                           |
| 3-0235 —<br>3-0237 —<br>3-0137 — | Occupancy Category - I [TABLE 1-1]<br>Importance Factor - I [TABLE 6-1]                                                                                                            |
| 0000                             | 5 Exposure ategory - B ISO-01 OF DRAWINGS]                                                                                                                                         |
| COMET                            | 6. Velocity Pressure Exposure Coefficient                                                                                                                                          |
| ö                                | As Calculated Previously (Shown in TABLE 1)                                                                                                                                        |
| 0                                | 7. Topographic Factor (Kz+) - 1 [SO-01 OF DEAWHORS]                                                                                                                                |
|                                  | 8. aust # [ect factor (a) - 0.85 [SEC 6.5 8-1]                                                                                                                                     |
|                                  | 9. Enclosure Classification - Inclosed [SEC 6.5.9]                                                                                                                                 |
|                                  | 10- Internal Pressure Coefficient                                                                                                                                                  |
|                                  | GCpi = +/-0.18 [FIG 6.5]                                                                                                                                                           |
|                                  | 11. External Pressure Coefficient                                                                                                                                                  |
|                                  | Windward Wall Cp = 08 [\$106-6]<br>Leyward Wall Cp = -0.5 [\$106-6]<br>Sale Wall, Ci = -0.7 [\$106-6]<br>2001 (0-59.25) Cp = -0.7 [\$106-6]<br>Roof (59.25-87) Cp = -0.7 [\$106-6] |
|                                  | Sale Wall (=-0.7 [FIG 6-6] Scot (0-5925) (=-1.00 [FIG 6-6]                                                                                                                         |
|                                  | Road (59-25-87) Cp = -0.7 [FIG 6-6]                                                                                                                                                |
|                                  |                                                                                                                                                                                    |
|                                  |                                                                                                                                                                                    |
| (0)                              |                                                                                                                                                                                    |
|                                  |                                                                                                                                                                                    |
|                                  |                                                                                                                                                                                    |

#### Base shear calculations

The base shear was calculated for the two orthogonal directions and determined by multiplying the story height by the net wind pressure at that level and by the width of the building perpendicular to the direction of the wind.

The total base shear in both orthogonal directions are shown in Table 3.

Width (N-S) - 87'

Width (E-W) - 160.25

**TABLE 3: Base Shear Calculations** 

| Story Height (ft) | Story Trib. Height x Net Pressure x Trib.<br>Width |            |  |  |  |
|-------------------|----------------------------------------------------|------------|--|--|--|
|                   | Wind (N-S)                                         | Wind (E-W) |  |  |  |
| 15                | 22.39                                              | 41.25      |  |  |  |
| 25.33             | 16.64                                              | 30.66      |  |  |  |
| 35.67             | 17.61                                              | 32.45      |  |  |  |
| 46                | 18.42                                              | 33.94      |  |  |  |
| 56.33             | 19.11                                              | 35.19      |  |  |  |
| 66.67             | 19.65                                              | 36.19      |  |  |  |
| 77                | 20.19                                              | 37.20      |  |  |  |
| 87.75             | 20.60                                              | 37.94      |  |  |  |
| 98.5              | 21.15                                              | 38.95      |  |  |  |
| 109.25            | 21.42                                              | 39.45      |  |  |  |
| 127.25            | 21.82                                              | 40.19      |  |  |  |
| Base Shear        | 219.00                                             | 403.40     |  |  |  |

**TABLE 4: Wind Pressures in the East-West Direction** 

|                    |        |          | Wind  | Pressu | ire Cha | rt (E-W) |                  |                  |
|--------------------|--------|----------|-------|--------|---------|----------|------------------|------------------|
| Location           | Z      | qz or qh | Ср    | Gf     | Gcpi    | qiGCpi   | Net Press        | ure (PSF)        |
|                    |        |          |       |        |         |          | qzGfCp-qi(+Gcpi) | qzGfCp-qi(-Gcpi) |
| Windward           | 15     | 10.05    | 0.8   | 0.85   | 0.18    | 1.81     | 5.03             | 8.64             |
|                    | 25.33  | 11.63    | 0.8   | 0.85   | 0.18    | 2.09     | 5.82             | 10.00            |
|                    | 35.67  | 12.87    | 0.8   | 0.85   | 0.18    | 2.32     | 6.44             | 11.07            |
|                    | 46     | 13.92    | 0.8   | 0.85   | 0.18    | 2.51     | 6.96             | 11.97            |
|                    | 56.33  | 14.81    | 0.8   | 0.85   | 0.18    | 2.67     | 7.41             | 12.74            |
|                    | 66.67  | 15.51    | 0.8   | 0.85   | 0.18    | 2.79     | 7.76             | 13.34            |
|                    | 77     | 16.22    | 8.0   | 0.85   | 0.18    | 2.92     | 8.11             | 13.95            |
|                    | 87.75  | 16.74    | 0.8   | 0.85   | 0.18    | 3.01     | 8.37             | 14.40            |
|                    | 98.5   | 17.45    | 0.8   | 0.85   | 0.18    | 3.14     | 8.73             | 15.01            |
|                    | 109.25 | 17.8     | 8.0   | 0.85   | 0.18    | 3.20     | 8.90             | 15.31            |
|                    | 118.5  | 18.33    | 0.8   | 0.85   | 0.18    | 3.30     | 9.17             | 15.76            |
| Leeward            | All    | 18.68    | -0.5  | 0.85   | 0.18    | 3.36     | -11.30           | -4.58            |
| Side               | All    | 18.68    | -0.7  | 0.85   | 0.18    | 3.36     | -14.48           | -7.75            |
| Roof (0 to 59.25)  | 118.5  | 18.68    | -1.04 | 0.85   | 0.18    | 3.36     | -19.88           | -13.15           |
| Roof (59.25 to 87) | 118.5  | 18.68    | -0.7  | 0.85   | 0.18    | 3.36     | -14.48           | -7.75            |
| Low Parapet WW     | 110.5  | 17.98    |       |        | 1.5     | 26.97    |                  | 26.97            |
| Low Parapet LW     | 110.5  | 17.98    |       |        | -1.0    | -17.98   |                  | -17.98           |
| High Parapet WW    | 127.25 | 18.68    |       |        | 1.5     | 28.02    |                  | 28.02            |
| High Parapet LW    | 127.25 | 18.68    |       |        | -1.0    | -18.68   |                  | -18.68           |





# **LATERAL LOAD**

# Seismic Loads

This sections outlines the seismic load calculations, in accordance to ASCE 7-05: Chapter 11 and 12.

|                                    | Tech. Report 2 Yemi A. Ostelu                                                                                                                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | LATERAL LOAD - SEISMIC                                                                                                                             |
|                                    | AS PER ASCE 7-05, CHAP: [1 4 12 SEISMIC DESIGN REQUIREMENTS #OR BUILDING STRUCTURES                                                                |
| 6 SQUARES<br>FILLER                | 1. EXEMPTIONS ESECTIVE 2] BUILDING IS NOT EXEMPT                                                                                                   |
| SHEETS - 5                         | 2. SITE CLASSIFICATION C COSTAINED FROM SQ-OLD                                                                                                     |
| 8-0237 — 200 SH<br>3-0137 — 200 SH | 3. MAPPED ACCELERATION PARAMETERS [SEC 11-4-1, #10 22-1 TO 22-6) Ss = 0.154 [OBTAINED FROM SO-01]                                                  |
|                                    | 4 SPECTRAL RESPONSE COEFFICIENTS CALC<br>TYBLE 11-4-1, Si & 0.25, Fa = 1.2<br>TABLE 11.4-2, Si & 0.1, Fu = 2.7                                     |
|                                    | Sms = FaSe = 1.2(0154) = 0.1859 , ERN 11.4-1<br>Sm1 = FVSI = 1.7(0.050) = 0.0059 , ERN 11.4-2                                                      |
|                                    | $S_{DS} = \frac{2}{3}S_{MS} = \frac{2}{3}(0.185) = 0.123g$ , EQN 11.4-3<br>$S_{DI} = \frac{2}{3}S_{MI} = \frac{2}{3}(0.085) = 0.057g$ , EQN 11.4-4 |
|                                    | NOTES SOS AND SOS VALUES MATCH DESIGN VALUES IN 30-01                                                                                              |
|                                    | 5. SEISWIC DESIGN CATEGORY [SEC 11.6, TABLE 11.61, 2]                                                                                              |
|                                    | SOS C 0.167 SEISMIC DESIGN CATEGORY A                                                                                                              |
|                                    | 6. OCCUPANCY CATEGORY ESFISHIC USE GROUP]                                                                                                          |
|                                    | 7. SEISHIC IMPORTANCE FACTOR                                                                                                                       |
|                                    | 8. SEISMIC ANALYSIS PROCEDURE ESEC 11.73                                                                                                           |
|                                    | ton = 0.01 Wx [from fan 11.7-1]                                                                                                                    |
|                                    | NOTE: BUILDING CAN USE ABOVE FORMULA BECAUSE<br>IT IS IN SEISMIC DESIGN CATEGORY A                                                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tech Report 2 Yem: A. Ositela                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. DETERMINE THE EFFECTIVE TOTAL SEISMIC WEIGHT                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - DL + 20% SL [ON ROOF]                                                                       |
| S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - DL (ON FLOORS]                                                                              |
| SOUARES<br>SOUARES<br>FILLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STENCTURAL STEEL +10085                                                                       |
| 200 SHEETS — 200 S | W= (160.25) (87) (80) + 2(160.25+87) (534)<br>= 13875 5 POUNDS                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAST-IN-PLACE CONCRETE FLOORS                                                                 |
| 3-0236<br>3-0237<br>3-0137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W= (160.25)(87) (13889E) + 2(160.25+87) (539) = 2190497 = 2190KIPS                            |
| COMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PENTHOUSE LOOF                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W= (15.25) (548) (27+0.2(20)) + 2(115.25+548) (39 x 18.5)<br>= 441/168.85 POUNDS<br>= 441/168 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL LOAD:                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W = 441 KIPS + 7(2190) KIPS + 3(1382) KIPS                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W= 19917 KIPS                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |



## MEMBER SPOT CHECKS FOR GRAVITY LOADS

The members were analyzed for gravity loads in a typical floor bay shown in Figure 9. These evaluated members include; the infill beams, interior and exterior girders and, the interior and exterior column. After the analysis, it was determined that the composite framing system was adequate to carry the loads. Figure 10 shows an enlarged typical bay.

The structural slab was a 3  $\frac{1}{4}$ " lightweight concrete on 2" x 18 gage metal, which is a total thickness of 5  $\frac{1}{4}$ "



Figure 9: Typical Floor Bay



Figure 10: Enlarged Typical Floor Bay



|                                               | Tech. Regort III Yemi A. Ositela                                              |
|-----------------------------------------------|-------------------------------------------------------------------------------|
|                                               | DECKING - (2" X 18GA DECK, S'/4" LWC)                                         |
|                                               | + USING VULCRAFT TABLES FOR 2VL1, 18 GA +                                     |
| 222                                           | 1. DECK SPAN CHECK                                                            |
| 5 SQUARES<br>5 SQUARES<br>5 SQUARES<br>FILLER | → SDI MAX UNSHORED CLEAR SPAN FOR 3/MORE SPANS - 12"-T"                       |
|                                               | 12'-7" > 10'-0" \ GOOD!                                                       |
| SHEET'S<br>SHEET'S<br>SHEET'S                 | 2. CHECK SUPERIMPOSED LOAD                                                    |
| 3 2 2 8 8 8                                   | WLL + SUPERIMPOSED DL & SUPERIMPOSED LOAD                                     |
| 9-0238<br>3-0238<br>3-0237<br>3-0137          | 100. + (15 + 5 + 3) \(\leq \) 205 \(\leq \) a000!                             |
| COMET                                         | VERIFYING FLOOR BEAMS                                                         |
| 0                                             | WIOX22 SPAN = 21'-3" SPACING = 10'-0" (TEIB-WIDTH)                            |
| 0                                             | DL = 42+15+5+3+2.2 PSF = 67.2 PSF<br>LL = 100 PSF                             |
|                                               | Wuz 1.20L + 1.6 LL<br>= L1.2 (61.2) + 1.6 (100)] × 10'                        |
| 0                                             | = 2-AIKLF                                                                     |
|                                               | $Mn = \frac{\omega L^2}{8} = \frac{2.41 \times 21.25^2}{8} = 136 \text{ Kff}$ |
|                                               | CHECK COMPOSITE STRENGTH                                                      |
|                                               | 12. (3/4) DIAMETER STUDS EVENLY SPACED ALONG LENGTH                           |
|                                               | - FOR 1 STUD/RIB - Qu = 17.1 K [weak study for 3 his Constructive             |
|                                               | 1. IQn = 6 x 17.1 = 102.6 KIPS                                                |
| 0                                             | BE+M WT. = 22(21.25) + (12 x 10) = 588 POUNDS                                 |
| Mark .                                        |                                                                               |
|                                               |                                                                               |
|                                               |                                                                               |

|                                                                                                          | Tech Report III Yemi A. Ositella                                                           |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| _                                                                                                        | DETERMINE EFFECTIVE PLANGE WIDTH                                                           |
|                                                                                                          | beff = 2x 21.25x 12/0 3 32 = 64"                                                           |
| - 50 SHEETS - 5 SOUARES<br>- 100 SHEETS - 5 SOUARES<br>- 200 SHEETS - 5 SOUARES<br>- 200 SHEETS - FILLER | min 10 x 12/2 = 60                                                                         |
|                                                                                                          | a = 102.6 = 0.54° : 42 = 5.25 - 0.54 = 4.98                                                |
|                                                                                                          | Vs, max = 6.49 x 50 = 325 K<br>Vc, max = 0.85 x 3.5 x 64 x 3.25 = 619 k } > IRu = 10 2.6 K |
| 3-0236<br>3-0237<br>3-0287                                                                               | FROM TABLE 3-19; DWN = 1494K [CONSFRUATIVE]                                                |
|                                                                                                          | PMn=14994 > 13694 × 140001                                                                 |
| COMET                                                                                                    | CHECK UNSHORED STRENGTH SCONCTRUCTION 1.4DL and 1.2DL + 1.6 CLLS                           |
|                                                                                                          | DL= 42+ 22/10 = 44.2 PSP<br>LL= 20 PSF (CONSTRUCTION LIVE LOAD)                            |
|                                                                                                          | Wu = [1.4 (44.2) (10)]/1000 = 0.62 KLF                                                     |
|                                                                                                          | Wu = [1.2(44.2)+1.6(20)](10)/1000 2 0.85 KLP                                               |
|                                                                                                          | -> Mu = wege = 0.85 x 21.252 = 48 K.ff                                                     |
|                                                                                                          | QMp = 97.5 Kgt > 48 K. gt / GOODS                                                          |
|                                                                                                          | CHECK DEFLECTIONS                                                                          |
|                                                                                                          | "Wet Concrete Deflection                                                                   |
|                                                                                                          | Wol = 44-2 PSP                                                                             |
|                                                                                                          | Doc(wetcome) = 5 WOLLY where Ix 384FIx                                                     |
| 0                                                                                                        | = 5 x 0.04(2 x 10 x 21.259 x 1728 = 0.59"                                                  |
|                                                                                                          | $\Delta TL = \frac{L}{240} = \frac{21.25^{\circ} \times 12}{240} = 1.06^{\circ}$           |

| 1                                                                   | Tech Report III Year A. Ositela      |
|---------------------------------------------------------------------|--------------------------------------|
|                                                                     | 0.59" < 1.06" / 6000!                |
|                                                                     | Live Load Deflection                 |
| A 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                             | War = 100 PSF x 10 = 1 KLF           |
| 5 SQUARES<br>5 SQUARES<br>6 SQUARES<br>FILLER                       | ILB = 250 m4 [ CONSERVATIVE]         |
| SHEETS I                                                            | ALL = 5 x 1.0x 21.25" x 1728 = 0.63" |
| 9-0235 — 50 8<br>9-0236 — 100 8<br>9-0297 — 200 8<br>3-0197 — 200 8 | ΔLL, MAX = 1 = 21.25 × 12 = 0.71"    |
| 7275                                                                | 0.63" < 0.71" \ G000!                |
| COMET                                                               | SUMMARY OF DESIGN                    |
|                                                                     | WIOKZZ WITH 12 EVENLY SPACED STUDS   |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
|                                                                     |                                      |
| -                                                                   |                                      |
|                                                                     |                                      |

|                                           | Tech-Report II Yemi A. Osifely                                |
|-------------------------------------------|---------------------------------------------------------------|
|                                           | VERYTHA TOOK GIRDERS CINTERIOR)                               |
| 9                                         | WIEX 50 , SPAN 201-0" TRIBWIDTH = 21.25"                      |
| 0 00 00                                   | PRINT LOAD CALC.                                              |
| 5 SQUARES<br>5 SQUARES<br>FILER           | DL = 67.2 +5%15= 69.6 PSF                                     |
|                                           | Wu = 1.2 (69.6) + 16 (100) = 244PSP x 101 x 21.25 = 51.8k= Pm |
| 200 SHEETS<br>200 SHEETS                  | Pu = 51.8/L                                                   |
| 3-0236 - 14<br>3-0237 - 28<br>3-0137 - 28 | Ph.                                                           |
| 1222                                      | \$ 10° €                                                      |
| COMET                                     | TR. TR.                                                       |
| 8                                         | Vmax = 51.8 = 25.9 K                                          |
|                                           | Mmax = 51.8 x 20 = 259 ft 16                                  |
|                                           | CHECK COMPOSITE STRENGTH                                      |
| 0                                         | 16(3/4") DIAMETER STUDS EVENLY SPACED ALONG LEBATH            |
|                                           | - Deck is parallel - wr = 5 = 2.5 = 1.5                       |
|                                           | Qu= 17-1 K [Conservative (fi= 3ks)]                           |
|                                           | ZQu = 8x17.1 = 136.8K                                         |
|                                           | DETERMINE EFFECTIVE FLANGE WINTH                              |
|                                           | beff = /1.25 x 12/2 )= 143.1"                                 |
|                                           | Mum 20 x12/8 x2 = 60"                                         |
|                                           | a= 136.8 = 0.77m; 42 = 5.25 - 0.77 = 4.9m                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ted Report III Yemi A. Ositelu                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vs, max = 14.7 x 50 = 735<br>Vc, max = 0.85 x 35 x 60 x 3.25 = 580 k f > ΣQu2 13618k                                                                                                                       |
| 6 SOUARES<br>5 SOUARES<br>6 SOUARES<br>FILLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FROM TABLE 3-19, OIM = 537ft & CONSERVATIVE]  OMN = 537ft > 259ft & GOOD!                                                                                                                                  |
| 200 SHEETS - 200 S | CHECK UNSHORED STRENGTH & CONSTRUCTION 1.4 DL and 1.2 DL 1 1.6 LL                                                                                                                                          |
| 8-0236<br>8-0236<br>8-0237<br>8-0137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DL = 46.5 PSF LL = 20 11SF<br>Wn = 1.4[46.5] = 65.1 x 10 x 21.25 = 13.8 k = pu                                                                                                                             |
| COMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wu = 1.2 (46.5) + 1.6 (20) = 87.8 PSF<br>Pu = 87.8 × 10 × 21.25 = 18.6 ×                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mu = 18.6 x 20 = 93 pt k<br>4<br>OMp = 379 ft x > 93 pt k 5 \$000!                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHECK DEFLECTIONS                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wet Concrete Peflection  Wol = 46.5 PSF ; Po = 46.5 × 10 × 21.25 = 9.9 × . Ix = 800 in t  Downstons - P13 - 9.9 × 208 × 1728 = 0.12 in                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Delta_{\text{DL. Wel-conc}} = \frac{PL^3}{48 \pm 1} = \frac{9.9 \times 20^8 \times 1728}{48 \times 29000 \times 800} = 0.12 \text{ in}$ $\Delta_{\text{WL. WAL}} = \frac{20 \times 12}{240} = 1^{\circ}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.12" < 1° / a0001                                                                                                                                                                                         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Live load Deflection  Wil = 100 PSF   PL = 0.1 × 10 × 21.25 = 21.25   TLB = 1380 in 4 [ CONSERVATIVE]  A. = 21.25 × 203 × 1728 - 0.15   C 20×12 - 0.67"                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUMMARY: WIB x 50 WITH 16 EVENLY SPACED STUDS WORKS!  GIRDER WT = 50x (20) + C 16x 10) = 2060 lbs                                                                                                          |

| 1111 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Tech Report II Yenri A. Ositelin               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|
| POINT LOAD CALC  DL = 67-2+ 35/10:625 = 70.5 pst Wu,0 (Exterior Walk) = 436plf Chinfactored)  Ru = []-2(70.5) + 16(100) \ x 10x10.625 = 25.9 k  Wung = 1.2(436) = 0.523 klf  Wung = 1.2(436) = | 0                                     |                                                |
| DL=67.2 + 35/10.625 = 70.5 pst  Wu,0 (Exterior Wall) = 436plf Clumfactored)  PN=[]:2(70.5) + 66(100) Tx 10x10.625 = 25.9 k  Wnnp = 1.2 (436) = 0.513 k LF   |                                       |                                                |
| Pu = D.2 (70.5) + 16 (100) Tx 10x10.625 = 25.9 K  Who = 2.2 (436) = 0.523 KLF  Who = 25.9 x 20  Hu = 25.9 x 20  Hu = 156 ftk  (HECK COMPOSITE STRENGTH  14 (5/4") DIAMETER STUDS EVENLY SPACED ALONG LENGTH  Deck is parallel - wr/w = 2.5 > 1.5  Qu = 7 x 17.1 = 120 k  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in; = 120  Vs.max = 515 k  Vs.max = 515 k  Vs.max = 515 k  Vs.max = 500 k  From Table 3-19, OMN = 363 ft k [Conservative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UARES                                 |                                                |
| Pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   1   1   1   1   1   1   1   1   1 |                                                |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEETS HEETS                           | Who z 1.2 (436) = 0.523 KL#                    |
| Mu = 25.9 x 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2002                                  | 1 1/2                                          |
| Mu = 156 ftk  CHECK COMPOSITE STRENGTH  14 ( 3/4") DIAMETER STUDS #UFILLY 3PACED ALONA LENATH  Deck 15 parallel - Wr/m = 2.5 21.5  Qu = 17.1K [ Conservative (fz.3ksi))  ZQu = 7 x 17.1 = 120 K  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-0298                                |                                                |
| Mu = 156 ftk  (HECK COMPOSITE STRENGTH  14 (5/4") DIAMETER STUDS #UFINLY SPACED ALONG LENGTH  Deck is parallel - Wr/m = 2.5 21.5  Qu = 17.1K [ Conservative (fc=3ksi))  ZQu = 7 x 17.1 = 120 K  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in; = 120  - 0.0513.5x60 = 0.67; 42:5.25-067  Vs.max = 5151c  Vs.max = 5151c  Vs.max = 500K  From Table 3-19, ØILIN = 363ft K [ Conservative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Mu = 25-9 × 20 + 0.523 × 202                   |
| 14 ( \$\frac{4}{a}\$) DIAMETER STUDS #UFILLY SPACED ALONG LENGTH  → Deck is parallel - Wr/m = 2.5 ≥ 1.5  Que = 17.1 K [ Conservative (fc=3ksi))  ZQu = 7 x 17.1 = 120 K  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in; = 120  Vs.mer = 515 K > ZQu = 120 K  Vc.mer = 500 K > ZQu = 120 K  From Table 3-19, ØMn = 363 ff K [ Conservative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COME                                  |                                                |
| Deck is parallel - Wr/m = 2.5 21.5  Que 17.1k [ Conservative (f=3ksi)  ZQu = 7 x 17.1 = 120k  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | CHECK COMPOSITE STRENGTH                       |
| Qn = 17.1 × [ Conservative (f23ksi)  ZQn = 7 x 17.1 = 120 ×  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in; = 120  0.85135x60 = 0.67, 42.25.25-067  - 4.9m  Vs.,max = 5151c > ZQn = 120 k  Vc.,max = 580 × > ZQn = 120 k  From Table 3-19, ØIUn = 363ff × [ Conservative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                     |                                                |
| ZQn = 7 x 17.1 = 120 k  DETERMINE EFFECTIVE FLANGE WIDTH  beff = 60in;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | Deck is parallel - wr/m = 2.521.5              |
| DETERMINE EFFECTIVE FLANGE WIDTH  5 c ff = 60 in ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                |
| Vs, mar = 515 K > ZQn = 120 K<br>Vc, mar = 580 K > ZQn = 363 ff k [Conservative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                |
| Vs, max = 515 k > ZQn = 120 k<br>Vc, max = 580 k > ZQn = 120 k<br>From Table 3-19, Øllin = 363 ff k [Conservative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0.00 135 160                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
| Muz363 HR > 156 ft k 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | From Table 3-19, Ollin = 363ffk [Conservative] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | JMuz363 ft x > 156 ft k ~ 4000                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                     |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                |

|                                               | Tech Regort II Yemi A. Ositela                                                   |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| 0                                             | Check Unshoved Strength GONSTRUCTIONS 1.406 and 1.206 +1-666                     |
| (D) (D) (D)                                   | DL = 47.5 PSF LL = 20 PSF WOL = 436 PLF                                          |
| S SQUARES<br>S SQUARES<br>S SQUARES<br>FILLER | Pu= 1 4[47.5] × 10×10 625 = 6.9 K<br>Wno = 1.4[436] = 0.6   KLF                  |
| SHEETS -                                      | Puz (1-2[47.5] + 1.6[20]) x 10 x 10.625 = 9.5 K<br>Wn = 1.2 (436) = 0.523 KLP    |
| 1   1   1                                     | Mu= 9.5 x 20 + 0.523 x 202 = 73.6 ff 1c                                          |
| 3-0236<br>3-0237<br>3-0137                    | OMP = 249 ft k > 73 6 ft k= Mu 4000                                              |
| COMET                                         | Check Deflections                                                                |
| 000                                           | Wet Concrete Deflection Ix 2                                                     |
|                                               | ADE, wet conc = Pro 13 + 5W-, 14<br>48 FI 384 FI                                 |
|                                               | = 514 x 203 x 1728 + 5x 0.436 x 204 x 1728<br>48 x 29000 x 510 384 x 29000 x 510 |
|                                               | Doluct conc = 0.20 m < 4/360 = 0.67 m V 0000!                                    |
|                                               | Laure Load Deflection                                                            |
|                                               | WLL = 200 PSP; PLL = 10.62572, ILB = 906 m4 [Consenvative]                       |
|                                               | ALL = 10.625 × 203 × 1728 = 0.12° < 0.67" / 9000                                 |
|                                               | SUMMARY: WIBX 35 WITH 14 EVENLY SPACED STUDS WORKS!                              |
|                                               | GIRDER WT = (5x20) + (14x10) = 840 POUNDS                                        |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |

|                                                                              | Tech Report III Yemi A. Ositelu                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0                                                                            | COLUMN 88 (WIZX65)                                                                                                                                                                                                            |  |
| SOUARES<br>SOUARES<br>SOUARES                                                | The renovated building consists of Ifloors of concrete to 3 floors of structural steel. With that said, the column and lysis was performed assuming wide flange columns were used on the lowest framed floor                  |  |
| 3-0235 - 50 SHEETS - 6<br>3-0237 - 200 SHEETS - 6<br>3-0137 - 200 SHEETS - 6 | Worst Case Loading 12DL + 1.6LL + 0.53L  FLOOR DL - BOPSE SLOW LOAD - 20PSE  FLOOR LL - 100PSE MAIN ROOF DL - 103 PSE  PENTHOUSE LOOF LL - 30 PSE PENTHOUSE ROOF DL - 27PSF  MAIN ROOF LIVE LOAD - 100PSF TRIB AREA = 425 JEL |  |
| COMEY                                                                        | MAIN ROOF LIVE LOAD - 100 .0.5 = 50 PSF  FLOOR LIVE LOAD - 50 PSF                                                                                                                                                             |  |
|                                                                              | Pu = ([1.2(B0 x 9) +1.2(103) +1.6 (50x4) +1.6 (50) + 0.5 (2095 p)]<br>= 763 ic From Table 4-1, Efflorge = 10<br>OP, for w12x65 = 766 K = 763 K / GOOD!                                                                        |  |
|                                                                              | NOTE. The Pu load was over-designed due to the use of the worst case tributary area in areas where the trib should be smaller.                                                                                                |  |
|                                                                              |                                                                                                                                                                                                                               |  |
|                                                                              |                                                                                                                                                                                                                               |  |
|                                                                              |                                                                                                                                                                                                                               |  |
| 0                                                                            |                                                                                                                                                                                                                               |  |
|                                                                              |                                                                                                                                                                                                                               |  |



#### **OVERVIEW OF ALTERNATIVE SYSTEMS**

Three alternative systems were designed for the same typical bay analyzed for the existing framing system and a comparison between the three various systems was made. The three alternative systems include;

- I. Reinforced two-way flat-slab with edge beam
- II. Structural steel framing w/ composite joists
- III. Non-composite wide flange steel frame on composite deck

These systems were selected on a structural efficiency and cost-saving basis. The following sections will highlight the advantages and disadvantages of each alternative system in greater detail.

## ALTERNATIVE SYSTEM #1: REINFORCED TWO-WAY FLAT SLAB W/ EDGE BEAM

The reinforced two-way flat slab was designed for a typical 20'-0" x 21'-3" bay. 12" x 16" edge beams were incorporated into the design to reduce the moments at the exterior columns, thus distributing the reinforcement between the slab and the beams, which save cost. This, however, can be counter-productive when the cost of constructing an edge beam in to the two-way slab is taken into account. The typical column size used in the design is a 24" x 24" square column.

All calculations were performed using the Direct Design Method, taken into account the on-way shear and the two-way punching shear and followed the Building Code Requirements for Structural Concrete (ACI 318-11).

#### Advantages

- Reduced slab thickness thus reducing overall floor to floor height
- o Inexpensive system
- Relatively easy to construct

0

#### Disadvantages

- o Increased overall weight
- Increased labor costs due to use of formwork and placement and handling of concrete
- o Lateral system has to be re-evaluated



|                                                                                         | Tech Report III Yami A. Ositelu                                                                                                                                                                                           |      |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                         | Wu = 1-2[(7x 150) + 23) +1-6(80)] = 261PSF                                                                                                                                                                                |      |
| - 5 SQUARES<br>- 5 SQUARES<br>- 6 SQUARES<br>- FILER                                    | CHECK PUNCHING SHEAR (Interior Col.)  ASSUMING #5 BARS  dang = T- 0.75 - 0.625 = 5.625"  CC Rent Dia [42]                                                                                                                 | 2 -  |
| 3-0235 — 50 SHEETS<br>3-0236 — 100 SHEETS<br>3-0237 — 200 SHEETS<br>3-0137 — 200 SHEETS | -> length of critical perimeter = [24+5.625] x4 = 118.5" -s Computing Ve for Critical Section                                                                                                                             |      |
| 8880                                                                                    | Vc = 45fc 6. d = 454000 (118.5) (5.625) = 168.8 16                                                                                                                                                                        |      |
| COMET                                                                                   | (2+4) To be d = (2+4) 14000 (118 5) (5625) = 252-94                                                                                                                                                                       |      |
| 0                                                                                       | min ( ded + 2) If 2 bod = (\$10×5.625 + 2) 14000 × 1185×5.625 = 1                                                                                                                                                         | 65 k |
|                                                                                         | Use Ve = 168.84; (BVe=0.75 x 169 = [124 K)  AC (318, R) 1.11.21  Vu on the critical permeter = 261x[20 x 21.25 - (29.625 x 2/12)]  [Vu = 109.6 K]                                                                         |      |
|                                                                                         | Because OVe = 12412 exceeds Vu = 109.6 K, the slab is OK in 2-WAY Punching Shear                                                                                                                                          |      |
|                                                                                         | USE DIRECT DESIGN METHOD TO DISTRIBUTE MOMENTS.  As per Section 13.6 ACI-318-10                                                                                                                                           |      |
|                                                                                         | Limitations 1. Min. of three continuous spans - G000                                                                                                                                                                      |      |
| 0                                                                                       | 2. Span lengths should not differ by more than 1/3 ln  1/3 (21.25) = 7.11 -3 GOOD  3 Unfactored I we load shall not exceed 2 % the unfactored DL  1 km = 80 \leq 2 \times 07.5 = Du accord  CAN USE DIFFECT DESIGN METHOD | +    |
|                                                                                         | CAL MY DIRECT DESIGN INF. IND.                                                                                                                                                                                            |      |

|                                                             | Tede Report III Yemi A. Ositela                                              |
|-------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                             | Before proceeding with DDM, Check One Way Shear                              |
| 02 to 02                                                    | CHECK<br>1/u = (0.261)(21)(10-5.625/2) = 52.2K                               |
| 5 SOUARES<br>5 SOUARES<br>5 SOUARES<br>FILLER               | Ve = 2x1x 54000 x 60x12) x 5.625 = 170.7 K<br>OVC = 0.75 x 170.7 = 128 K 198 |
| SHEETS                                                      | OVE = 128K > VE = 52.2K / 4000!                                              |
| 3-0235 — 50<br>3-0236 — 100<br>3-0237 — 200<br>3-0137 — 200 | CHECK PUNCHING SHEAR (Fxlerior Col.)                                         |
|                                                             | 1-d/2 Assuming \$5 Bors day = 5.625"                                         |
| COMET                                                       | 1                                                                            |
| 0                                                           | > length of critical perimeter= 2 [(24 + 5.625)+(24 + 5.625)] = 173"         |
|                                                             | - Consputing Ve for Critical Section                                         |
|                                                             | Ve = Affic bod = (2+4) Itic bod                                              |
|                                                             | mm (ded + 2) Ufe bo d                                                        |
|                                                             | Vu = 261 x [20 x 10.625 - (29.625/12 x 26.818/12)] = 54 K                    |
|                                                             | OVE = 121K > Vu = 54K / 2000.                                                |
|                                                             | Hence the slab is OK in 2-WAY Punching Shear                                 |
|                                                             |                                                                              |
|                                                             |                                                                              |
|                                                             |                                                                              |
|                                                             |                                                                              |



|                                                             | Tech Report III Yemi A. Ositela                                                                             |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0                                                           | Mo determination for the different methods                                                                  |
| RES                                                         | For Panel A $(0.260)(10.625)(20-2)^2 = 112.3 \text{ g/k}$                                                   |
| ETS — 6 SQUARES<br>ETS — 5 SQUARES<br>ETS — FILLER          | For Panel B (0.261)(21)(20-2)2 = 221.9 8 K                                                                  |
| 3-0236 — 100 SHEE<br>3-0237 — 200 SHEE<br>3-0137 — 200 SHEE | For Panel C:<br>Mo = (0.261) (19.875)(21.25-2)2 = 240.2 ft/4                                                |
| က်က်လ် က်<br>ကြ                                             | DISTRIBUTION OF MOMENTS.                                                                                    |
| COMET                                                       | as For Interior Spans (Panel B), as per AC1318-10 13-6-3-2                                                  |
|                                                             | - Ve factored Moment [Support] = -0.65 Mo = -144.2 KA<br>the factored Moment [Midspan] = 0.35 Mo = 77.7 kgt |
| 0                                                           | -3 Dividing the moments between the column o undle stays                                                    |
|                                                             | Negative Moments: As per ACI 318-11 13-6 4-1                                                                |
|                                                             | Aflela = O [ NO BEAMS BETWEEN COLUMNS]                                                                      |
| 0                                                           | (01. Strip -ve moment = 0.75 x -144.2 = -100.2 kgt<br>middle strip -ve moment = 0.25 x -144.2 = -36.1 kgt   |
|                                                             | Positive Moments: As per ACI 318-11 13.6.4.4  Afile 16 = 0                                                  |
|                                                             | Column Strip the moment = 0.60 × 77.7 = 46.6 kgf Whiddle Strip the moment = 0.40 × 77.7 = 31.1 kgf          |
| 0                                                           | No middle III                                                                                               |
|                                                             | COLUMN T                                                                                                    |
|                                                             | 1 1 ye Milyor K                                                                                             |

|                                               | Tech Report II Yemi A. Ositelu                                                                                                         |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| -                                             | -> For Exterior Spans (Panel A ? Panel C) as per AC1318-11136-33                                                                       |
| 6 SQUARES<br>5 SQUARES<br>5 SQUARES<br>FILLER | Extve factored moment = -0.30 Mo = - 72.1<br>tue factored moment = 0.50 Mo = 120.1<br>Intve factored moment = -0.70 Mo = -168.1 H K    |
|                                               | - Dividing the moments between the colourn's widdle strips                                                                             |
| SHEETS<br>SHEETS<br>SHEETS<br>SHEETS          | Interior -ve moments. As per ACI 318-11 13.6.4.1                                                                                       |
| 1111                                          | ag. Le/L = 0 [ NO BEAMS BETWEEN COLUMNS]                                                                                               |
| 3-0235<br>3-0235<br>3-0137                    | luterior Middle-strip -ve moment + 0.75 x - 168.1 = -126.14/k                                                                          |
| COMET                                         | the moments: As per A(1318-1113.6.4.4                                                                                                  |
| 0                                             | Column - strip the moment = 0.60 + 120.1 = 72.144k                                                                                     |
| 0                                             | MARKE - STOP THE MINIMENT : 0140 x 120.1 = 40,9410                                                                                     |
|                                               | Extensor - Ve moments for the attached torsional member shown below                                                                    |
|                                               | agilelle 0 Br = Ect C<br>Réce Is                                                                                                       |
|                                               | 1-9"-1   17"= ht line = Aht; 9 < 4(7)                                                                                                  |
|                                               |                                                                                                                                        |
|                                               | C= (1-0.68 x 12/16) 123 x 16 + (1-0.63 x 7/9) 72x9 = 2854in9                                                                           |
|                                               | 21"-21                                                                                                                                 |
| 0                                             | $7 = 9$ $C = (1-0.63 \times \frac{7}{21}) \cdot 7^{8} \times 21 + (1-0.63 \times \frac{9}{12}) \cdot 9^{2} \times 12$ $12 \cdot 9 = 3$ |
|                                               | C = 1105 144                                                                                                                           |
|                                               | USE LARGER C , C= 2854 mt                                                                                                              |
|                                               |                                                                                                                                        |

|                                                      | Tech Report III Yemi A - Ositelu                                                                                       |    |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----|
|                                                      | 3 Is = b h3 where b = sength of strip of stab being designed b= le and h = Im                                          |    |
| M M M                                                | $I_s = (19.875 \times 12) \times 7^3 = 6817 \text{ m}^4$                                                               | ¥8 |
| 6 SOUARES<br>5 SOUARES<br>6 SOUARES<br>FILLER        | Assuming same fle value in slab and beam, Eco = Eco                                                                    |    |
| SHEETS - 5<br>SHEETS - 5<br>SHEETS - 5<br>SHEETS - 5 | $Bt = \frac{2854 \text{ m}^4}{2 \times (6817) \text{ m}^4} = 0.209$                                                    |    |
| 200 SHE                                              | As per Ac 1 318-11 13-6.4.2, through linear luterpolation                                                              |    |
| 9-0238<br>9-0237<br>9-0237                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                  |    |
| сомат                                                | 2.15 1 75 x = 97.9% to column strip                                                                                    | 4  |
| 8                                                    | Therefore,                                                                                                             |    |
| 9 E                                                  | Exterior column strip -ve moment = 0.979 (-72.1)=-70.6 kff<br>Exterior middle strip -ve moment = 0.021(-72.1)=-1.5 kff |    |
|                                                      |                                                                                                                        |    |
|                                                      |                                                                                                                        |    |
|                                                      | OF COMMENTS                                                                                                            |    |
|                                                      | STEIP TO THE STEIP                                                                                                     |    |
|                                                      | Mayne P.                                                                                                               |    |
|                                                      | 12120212                                                                                                               |    |
|                                                      |                                                                                                                        |    |
|                                                      |                                                                                                                        |    |
|                                                      |                                                                                                                        | -  |
|                                                      |                                                                                                                        |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tech Report III Yemi A. Ositela                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For Panel A as per AC1318-11 13 6 33.                                                                                          |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extve factored moment = -0.30 Mo = -33.714 k<br>tre factored moment = 0.50 Mo = 56.214 k                                       |  |
| S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calculation of de for an Edge Beam                                                                                             |  |
| S SQUARES<br>5 SQUARES<br>6 SQUARES<br>FILER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | authord is 6.9 in from the top of alab                                                                                         |  |
| SHEETS - SHE | 16 Ib = 12×163 + (12×16)×(8-6.9)2 +                                                                                            |  |
| 1   200 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{12}{12} = \frac{12}{9 \times 7^2} + (9 \times 7) \times (6.9 - 3.5)^2 = 5314 \text{ in } 4$                             |  |
| 3-0235<br>3-0235<br>3-0237<br>3-0137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Is = (11.1254 12) × 13 = 3816 int , le/k = 0.53                                                                                |  |
| COMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = df = 5314 = 1.4; of le/h = 0.74                                                                                              |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distribution of moments to the column and widdle stops  Exterior -ve moment  Bt = 0.209 afile/le = 0 [CONSERVATIVE] lark = 0.5 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | As pen AC (318 13.6.42, twough interpolation                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8+ lr/li=05<br>0 100 x=97.9% to Col Strup<br>0.209 x<br>2.5 75                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Column strip = 0.979 Ma = -32.99 gf K<br>Middle strip = 0.021 Mo = -0.707 gf K                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * Column strip moments are divided between the beam and slab according to the value of appeals                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is performed between 85% and 0%.                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0 0 05 10 05 10 05 05 0                                                                                                      |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-74 of column stro moment to the beams:                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Balance of 31-12 assigned to slab                                                                                              |  |

|                                                                                     | Tech. Report II Yemi A. Osilelu  Boon = 0.629 x -22.5920.75 kol 2                                                                                                                         |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| S — 5 SOUARES<br>S — 5 SOUARES<br>S — 5 SOUARES<br>S — FILLER                       | State Portion = 0.629 x - 32.99 = -20.75 kgt }  Positive Moment  After the = 0.74 and As per AC1318-11 13.6.4.4  Through Interpolation,                                                   |  |
| 9-0236 — 50 SHEET<br>9-0236 — 100 SHEET<br>9-0287 — 200 SHEET<br>3-0137 — 200 SHEET | Column stop = 0.822 x 56.2 = 46.2 ff k  Middle stop = 0.178 x 56.2 = 10.0 ff k                                                                                                            |  |
| СОМЕТ                                                                               | As calculated earlier, 62.9% of col strop moment to beams and the balance to the rest (27.1%) moment to beams  Beam = 0.621 × 46.2 = 19.1 Kgt }  Slab Portion = 0.371 × 46.2 = 17.1 Kgt } |  |
|                                                                                     | CONTRACT Panel A  1/2 MIDDLE STRIP                                                                                                                                                        |  |
| 0                                                                                   |                                                                                                                                                                                           |  |
|                                                                                     |                                                                                                                                                                                           |  |

|                                              | Tech Report III Yeni A. Osifelu                                                                  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|--|
|                                              | DETERMINATION OF REINFORCEMENT                                                                   |  |
|                                              | INTERIOR SPAN (Negative Reinforcement) - Panel B                                                 |  |
| S SQUARES<br>S SQUARES<br>S SQUARES<br>FILER | -> Column Strip As = Mu = -108.2 x 12 0.9 x 60 x 0.95 K 5.625                                    |  |
| 1111                                         | Asra = 4.51A                                                                                     |  |
| SHEETS<br>SHEETS<br>SHEETS<br>SHEETS         | Minimum Reinfording As per ACI 318-11, 13-3-1                                                    |  |
| 36 50<br>38 100<br>37 200<br>37 200          | Asmu ≥ 0 001866 = 0.0018 x 10.47 x 7x 12 = 1.58 m² Asineg > Asimin = 4000                        |  |
| 3-0236<br>3-0237<br>3-0137                   | Hence , try (15)#5's                                                                             |  |
| COMET                                        | => a = (4.65 m2) x 60<br>0-85 x 4 x 10-47 x 12                                                   |  |
| 8                                            | printo 9(4.65) (5.625 - 0.65/2) x 60]/12 = 111 g/k                                               |  |
| 9                                            |                                                                                                  |  |
|                                              | Check max spacing S & 2h = 2x7 = 14 in                                                           |  |
|                                              | There for , use (15) #5'3 0 12 m                                                                 |  |
|                                              | -3 Middle Strip<br>As = -36.1×12<br>0.9×60×0.95×5.625 = 1.5102                                   |  |
|                                              | Check Winimum Reinforcement                                                                      |  |
|                                              | Asimin = 2-58 m² > Asimen Use Asimin = 1.58 m²                                                   |  |
|                                              | Try (6) \$5's (3) 12 - ; As = 1.86 m2                                                            |  |
|                                              | $\Rightarrow a = \frac{1.86  \text{m}^2 \times 60}{0.95 \times 4 \times 10.47 \times 12} = 0.26$ |  |
|                                              | OMn = [0.9(2.86)60 (5.625-026/2)]/12 = 46 ft k                                                   |  |
| 0                                            | DMn = 46 ff K > Mu = 36. lft ( 600)                                                              |  |
|                                              | 436 (6) 43 3 (6) 120                                                                             |  |
|                                              |                                                                                                  |  |
|                                              |                                                                                                  |  |

|                                               | Tech Report III Yem A. Osifela                                                                                  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 0                                             | 1NTERIOR SPAN (+ve Reinforcement).  Scolumn Strap Asireq = A6.6 x 12 Asireq = 0.9 x 60 x 0.95 x 5.625 = 1.94 m² |
| 6 SQUARES<br>5 SQUARES<br>5 SQUARES<br>FILLER | Check Min. Reinforcement i > Asnew = 2.58 m²                                                                    |
| 80 SHEETS 200 SHEETS 200 SHEETS               | Toy (7) #5's @ 12 in , As = 2.17 m2<br>a= 2.17 x 60 = 0.304 in<br>0.85 x 4 x 10.47 x 12                         |
| 3-0236<br>3-0239<br>3-0237<br>3-0187          | OMn = [0.9 x 2.17 x 60 x (5.625 - 0.304/2)]/12 = 53.48 K                                                        |
| COMET                                         | Hence, use (7) #515 @ 12 m                                                                                      |
| 0                                             | Asiren = 31.1 x 12 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1                                                         |
|                                               | Check min Reinforcement  Use As = 158m2 > As, reg = 2.29 m2                                                     |
| 8.1                                           | Try (6) #5'5 @ 12 in $As = 1.86 \text{ m}^2$ $a = 1.86 \times 60 = 0.26 \text{ in}$                             |
|                                               | DIUN = [0.9 × 1-86 × 60 × [5.625 - 0.261/2)]/12 = 46 ftk                                                        |
|                                               | Hence, use (6) \$5's @ 12m                                                                                      |
|                                               |                                                                                                                 |
| (8)                                           |                                                                                                                 |
|                                               |                                                                                                                 |

|                                                                                         | Tech Report III. Yemi A. Ositela                                                                                                                             |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0                                                                                       | EXTERIOR SPAN (+ve Remforcement) [Panel C]  Column Strip Asireq = 126.1 x 12  0.9x60x0.95 x 5.625                                                            |  |
| S — 5 SQUARES<br>S — 5 SQUARES<br>S — 5 SQUARES<br>9 — FILER                            | Check nun reinforrement  Asireq = 5.24 in 2 > Asimin = 1.50 in =  Try (18) # 5's , As = 5.58 in 2                                                            |  |
| 3-0236 — 50 SHEETS<br>3-0239 — 100 SHEETS<br>3-0237 — 200 SHEETS<br>3-0137 — 200 SHEETS | 0.85 x 4x 9.9375 x 12 = 0.825 m<br>0.85 x 4x 9.9375 x 12<br>OMn=[0.9 x 5.58 x 60 x (5.625 - 0.825/2)]/12 = 130.8 M K                                         |  |
| COMET                                                                                   | Hence, use (18) # 5/5 @ 12                                                                                                                                   |  |
| 95                                                                                      | Middle Strip<br>Asiney = 42 x 12<br>0.9 x 60 x 0 45 x 5 + 625 = 1.75 m²<br>Asney = 1.75 m² ≥ Asimn = 2.50 m² / 6.000!                                        |  |
|                                                                                         | Try (6) #5's @ 12in As= 1.86 m2                                                                                                                              |  |
| 70                                                                                      | 0 = 1.86 × 60 = 0.275 m<br>0.85 × 4 × 9.9375 × 12<br>0 mm = L0.9 × 1.86 × 60 × (5.625 - 0.275/2)]/12 = 45.9 ff ×<br>0 mm > mm / GOOD<br>Use (6) #5's (6) 12m |  |
|                                                                                         |                                                                                                                                                              |  |
|                                                                                         |                                                                                                                                                              |  |
|                                                                                         |                                                                                                                                                              |  |
|                                                                                         |                                                                                                                                                              |  |
|                                                                                         |                                                                                                                                                              |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tech Report III Yemi A. Ositela                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXTERIOR SPAN (+UR Reinforcement) I Panel CI Column Strip                                                                       |  |
| 00 th 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Asireq = 72.1 x 12<br>0.9 x 60 x 0.95 x 5625 = 2.99 m²                                                                          |  |
| 5 SQUARES<br>5 SQUARES<br>6 SQUARES<br>FILLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | As, rey = 2.99 in 2 > As, min = 1.50 m²                                                                                         |  |
| SHEETS - SHE | Try (10) #5'5 @ 12 in , As = 3.10 in $^{2}$ $a = \frac{310 \times 60}{0.85 \times 4 \times 4.9375 \times 12} = 0.458 \text{ m}$ |  |
| 3-0236 — 50<br>3-0236 — 100<br>3-0237 — 200<br>3-0137 — 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QMn = [0.9 x 3.10 x 60 x (5.625 - 0.458/2)]/12 = 75.2 ft/2                                                                      |  |
| COMMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USE (10) # 5'S @ 12m                                                                                                            |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Middle Strip                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | As, reg = 48 x 12 = 1.996in2<br>0.9x60x0-95x5.625                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | As, req = 1.996 = > Asm = 1.50 m²  Try (7) #5/s @ 12m , As = 2.17m²                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $a = \frac{2.17 \times 60}{0.85 \times 4 \times 9.9375 \times 12} = 0.32 \text{ m}$                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OMn = [0.9 x 2.17 x 60 x (5 625 - 0.32/2)]/12 = 53.4 ft K                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1438 (7) #5's Ø 12m                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 N2B C17 4 3 2 80 1 Vm                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |

|                                                             | Tech-Report II Yemi A. Ositelu                                                                                         |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0                                                           | EXTERIOR SPAN (-ve Reinforcement) [Panel A]  Column Strip (Beam Pointron) - Assumed #4's  Assumed = 20.75 x 12 = 0.34h |
| 6 SQUARES<br>6 SQUARES<br>5 SQUARES<br>FILLER               | Try 2 #4's , As = 0-40 in 2 > 0.3412 ~                                                                                 |
| 1111                                                        | $a = 0.4 \times 60 = 0.58 \text{ in}$                                                                                  |
| - 50 SHEETS<br>- 200 SHEETS<br>- 200 SHEETS<br>- 200 SHEETS | OMIN = [0.9 x 0.4 x 60 x (14.25 - 0.58/2)]/12 = 25.1 kgt<br>USE [2] # 4 'S @ 6 in ]                                    |
| 8-0236<br>8-0237<br>8-0137                                  | Slab Portion (Assumed #5's)<br>As reg = 12.24 × 12<br>0.9×60×0.95 × 5.625 = 0.51m2                                     |
| COMET                                                       | As, mm = 0.8 = > 0.51 = Use As, m= Try (3) #5's @ 10 m , As = 0.93 = =                                                 |
|                                                             | a = 0.93 m²x 60 = 0.26 in                                                                                              |
|                                                             | \$11en = [0.9 x 60 x 0.93 x (5.625 - 0.26)]/12 = 23 ff x > Nen /                                                       |
|                                                             | MSE (3) #5'5 (8) 10 in                                                                                                 |
|                                                             | Column Strip (Beam Portion) - Assumed #4's As, reg = 29.1 x 12  0.9 x 60 x 0.95 x 1425                                 |
|                                                             | Try (3) #4's @ 8 m; As = 0.60 m²                                                                                       |
|                                                             | a = 0.6 × 60<br>0.85 × 4× 12 = 0.88 m                                                                                  |
|                                                             | Dun = [0.9 r 0.6 x 60 x (14.25 -0.00/2)]/12 = 37.2 ft/k > My                                                           |
|                                                             | [Use (3) #4's @ 8m]                                                                                                    |
| 0                                                           | Slot Pontion (Assumed #5's)<br>As, reg = 17.1 x12<br>0.9x60x0.45 x5.625 = 0.71m2                                       |
|                                                             | Asimo = 0.8 m2 > 0.71 m2 Use Asim= 0.8 m2 Try (3) # 511 As = 0.93 m2                                                   |
|                                                             |                                                                                                                        |

|                                               | Teele Regort III Yenni A. Ositelen                                               |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| ~                                             | a = 0.20 m . Dun = 23ff K = Mu = 17-1 y K                                        |
| 0                                             | TUSE (1) #5'3 (1) 10 m                                                           |
| m w m                                         | Middle Strip (-ve) moment<br>As = 0.707 x 12<br>0.9x 60x 0.95 x 5.625 = 0 029 m2 |
| 6 BOUARES<br>6 BOUARES<br>5 SQUARES<br>FILLER | 0.9×60×0.95×5.625                                                                |
|                                               | As, min = 0.8 in 2 > 0.029 m2. Use As = 0.8 m2                                   |
| SHEETS<br>SHEETS<br>SHEETS                    | Try (3) #5's (10 10 , As = 0.93 m2                                               |
| 200 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9     | O Men 2 23ftk >> 0-707 V                                                         |
| 3-0236<br>3-0236<br>3-0137                    | USE (3) # 5'S (0 10 m)                                                           |
|                                               | Middle Strip (tue moment)                                                        |
| COMET                                         | As = 10 x 12<br>0.9 x 60 x 0.95 x 5:625 = 0.42in2                                |
| 0                                             | Asmor > Asmay, Use As, ma = 0.8m2                                                |
|                                               | Try (3) #515 @ 20 in , As = 0-93 in 2                                            |
|                                               | Oven = 23fth > 10ftk                                                             |
|                                               | USE (3) #5'S @ 40 in (                                                           |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
| 0                                             |                                                                                  |
|                                               |                                                                                  |
|                                               |                                                                                  |
| 2                                             |                                                                                  |



## ALTERNATIVE SYSTEM #2: STRUCTURAL STEEL FRAME W/ COMPOSITE JOISTS

The structural steel frame was system was designed for a modified 20'-0" x 20'-0" bay, due to considerations for use of the SJI Standard for Composite Joists. The composite joists were incorporated with the use of non-composite beam/girders on the column lines with the goal of adding extra stiffness to the structure. The composite joists were designed using a structural slab of 2 ½" lightweight concrete over a 2" x 18 gage metal deck

Although CJ-series joists were specified in this design, it will be more economical to use ECOSPAN composite joists. This creates a simple, lightweight, flexible and easily constructible framing system, which also saves costs.

#### Advantages

- Lightweight system which potentially translates to reduced foundation costs
- o Non-combustible steel makes it good for fire protection
- o Reductions in overall floor to floor height
- o Easily constructible
- Efficient erection
- o Inexpensive system

#### Disadvantages

Not a typical system used for construction

|                                        | Tech Report III Yemi A. Osifelu                                                                                            |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                        | DETERMINATION OF VALUES USED IN CALCULATION                                                                                |
|                                        | Decking - (2" x 18 GA DECK, 41/2" LWC)  1. Span Check  Span Check  Span Check  1. Span Check  Span = 13'-1" > 10" 1. 4000] |
| - 5 SQUARES<br>- 5 SQUARES<br>- FILLER | 2. Superimposed load duck  West Superimposed DL & Super imposed lived  123 & 170 9000;                                     |
| 200 SHEETS<br>200 SHEETS<br>200 SHEETS | Construction Live Load should be estimated as follows                                                                      |
| 3-0236 1<br>3-0237 2<br>3-0137 2       | Lc = 20R, , where 12 & Lc & 20 PSF                                                                                         |
| 886                                    | At = 20x20 = 400 H2                                                                                                        |
| Ta .                                   | 1. R = 1.2 - 0.001 At for 200 ft2 < At < 600 ft2                                                                           |
| COMET                                  | R1 = 0.8 ; LL = 20 PSF x 0.8 = 16 PSF                                                                                      |
|                                        | Composite Live Load                                                                                                        |
|                                        | Reduced as per ASCE 7-10, 4.7.2                                                                                            |
|                                        | $L_0 = 100 \text{ PSF}$ ; $L = 100 \times 0.5$                                                                             |
| -                                      | L = 100 × 0.78 = 78 PSF                                                                                                    |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |
|                                        |                                                                                                                            |



|                                          | Tech. Report III Yemi A. Osifelu                                                                                                                             |     |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 8. (OMPOSITE DEAD LOAD  (b) MEP  (b) CEILING  5 PJF  3 PSF  23 PSF  3 23 X 10 = 230 PLF                                                                      | -3  |
| TS - 5 SQUARES                           | 4. COMPOSITE LIVE LOAD. (a) Live Load [Reduced] 78 PSF  78 PSF  78 PSF  78 PSF                                                                               |     |
| 200 SHEETS<br>200 SHEETS<br>200 SHEETS   | 5. TOTAL FACTORED NON-COMPOSITE DEAD LOAD , 1.2 K(NCDL)                                                                                                      |     |
| 3-0236<br>3-0238<br>3-0137               | 6- TOTAL FACTORED COMPOSITE DEAD LOAD 1.2x (CDL)                                                                                                             |     |
| COMET                                    | 7. TOTAL FACTORED COMPOSITE LIVE LOAD, I-GX(CLL)                                                                                                             |     |
|                                          | 8 TOTAL FACTORED COMPOSITE DESIGN LOAD,                                                                                                                      |     |
|                                          | ⇒ 480 + 276 + 1248 = 2004 PLF                                                                                                                                |     |
|                                          | CAMBER AND DEFLECTION (Unfactored Load)                                                                                                                      |     |
| 70                                       | 1. LOADS TO CAMBER FOR:  a) Non-composite Dead Load 40 x 100% = 40 PSF  b) Composite Dead Load 23 x 50% = 11.5 PSF c) Composite Live Load 78 x 10% = 7.8 PSF |     |
|                                          | 2. MAXIMUM ALLOWABLE LIVE LOAD DEFLECTION , 4/360                                                                                                            | 1.5 |
|                                          | => (20 x12)/360 = 0.67 in                                                                                                                                    |     |
|                                          | 3. MAXIMUM DEFLECTION, L/240                                                                                                                                 |     |
|                                          | $\Rightarrow (20 \times 12)/240 = 1 \text{ in}$                                                                                                              |     |
|                                          |                                                                                                                                                              |     |
|                                          |                                                                                                                                                              |     |
| 0                                        |                                                                                                                                                              |     |
|                                          |                                                                                                                                                              |     |
|                                          |                                                                                                                                                              |     |

| DETERMINE JOIST WIFT QUANTITY AND SIZE OF SHEAR STUDS, ANTICIPATED FLOOR DEFLECTIONS, NUMBER OF BRIDGING ROWS ROD AND WAKINGING CIRCULAR DUCT BENING  1) Assumed Joist Depth - [14in]  2) Joist Selection  ** The proper joist shall be selected from the Design Cande LAFD Weight Table for Composite Steel Joists (J-dries) - LWC for a 2014 Joist alight at 14in, a to tal farfored composite design dead of 1240 PLF, and a composite live look of 1240 PLF *  For 14in joist depth selected;  (a) We = 13.6 PLF  (b) W360 = 1384 PLF > 1248 PLF & 9000!  Where N = Quantity of Schean Studs  3.8810 GING AND NOWINGE HORIZONTAL TOO CHORD FORCE (Ph.)  SELECTION  From the Design Cande LRFD Weight Table for Composite  11 row of horizontal bridging (14) is required  Using Js = 10ft and Joist depth = 14in  Bridging Size - L2.5 x 2.5 x 0.187 [Conservative Choice]  A. Non-Composite Effective Moment of Inertia Selection  From the Design Cande LPFD Weight Bridging Table for Composite Steel Joists, CJ-Seics - LWC  Using TL = 2000 PLF and Joist depth = 14in  Inon-composite Steel Joists, CJ-Seics - LWC  Using TL = 2000 PLF and Joist depth = 14in  Inon-composite Steel Joists, CJ-Seics - LWC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             | Tech Report II Yemi A. Ositela                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Joist Selection  ** The proper joist shall be selected from the periods of the Position of the Periods of the Position of the Jost of Joint of Join | 0                                                                           | ANTICIPATED FLOOR DEFLECTIONS, NUMBER OF BRIDGING ROWS ROD AND MAKINGER CIRCULAR DUCT DENING                                                                                                              |
| Design Quide LRFD Weight Table for Composite Steel Joists  (J Series - LWC for a 2014 Joist Alstin of Iden, a total tactored composite design load of 12004 PLF, and a composite live load of 1348 PLF *  For 14in joist depth selected;  (a) We = 13.6 PLF  (b) W360 = 16 PLF  (c) N-6s = 16 PLF  (d) Ware N = Quantity of Shean Stude  3. Beinging AND Nominal Horizontal too Horo Force (Ph.)  SELECTION  Trow the Design Cande LRFD Weight Table for Composite  1 row of horizontal bridging (1H) is required  Using Size - L2.5 x 2.5 x 0.187 [Conservative Choice]  A. Non-Composite Effective Moment of Inertia Selection  From the Design Cande LRFD Weight Bridging Table  for Composite Steel Joists, CJ-Shries - LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UARES<br>UARES<br>ER                                                        |                                                                                                                                                                                                           |
| (a) We = 13.6 PLF (b) W360 = 1384 PLF > 1248 PLF \( \text{G000}! \)  (c) N-ds = 16 - 5/8"  where N = Quantity of Shear Stude  3.8810 GING AND NOMINAL HORIZONTAL TOP CHORD FORCE (Ph-)  SFLECTION  From the Design Counde LRFD Weight Table for Composite  3 tell Joists, LJ-Series - LWC  11 row of horizontal bridging (214) is required  Using Js = 10ft and Joist depth = 14 in  Bridging Size - L 2.5 x 2.5 x 0.187 [Conservative Choice]  [hor = 750 lbs]  A. Non-Composite I ffective Moment of Inertia Selection  Trom the Design Chiefe LRFD Weight Bridging Table  for Composite Steel Joists, CJ-Skries - LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 50 8HEETS - 5<br>- 100 SHEETS - 5<br>- 200 8HEETS - 5<br>- 200 SHEETS - 5 | Design Guide La FD Weight Table for Composite Steel Joists  GJ= Series - Lwc for a 2014 Joist, Aloth of 14in, a total factored composite design load of 2004 PLF, and a composite live load of 1348 PLF * |
| 3. BRIDGING AND NOWINAL HORIZONTAL TOP CHORD FORCE (Ph.)  SELECTION  From the Design Canide LRFD Weight Table for Composite  Steel Joists, LJ-Senies - LWC  1 row of horizontal bridging (2H) is required  Using Js = 10ft and Joist depth = 14 in  Bridging Size - L 2.5 x 2.5 x 0.187 [Conservative Choice]  [Phr = 750 lbs]  A. Non-Composite I effective Moment of Inertia Selection  From the Design Childe LRFD Weight Bridging Table for Composite Steel Joists, CJ-Senies - LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-0236<br>3-0236<br>3-0137                                                  |                                                                                                                                                                                                           |
| 3. BRIDGING AND NOWINAL HORIZONTAL TOP CHORD FORCE (Ph.)  SELECTION  From the Design Canide LRFD Weight Table for Composite  Steel Joists, LJ-Senies - LWC  1 row of horizontal bridging (2H) is required  Using Js = 10ft and Joist depth = 14 in  Bridging Size - L 2.5 x 2.5 x 0.187 [Conservative Choice]  [Phr = 750 lbs]  A. Non-Composite I effective Moment of Inertia Selection  From the Design Childe LRFD Weight Bridging Table for Composite Steel Joists, CJ-Senies - LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMET                                                                       | (b) W360 = 1384 PLF > 1248 PLE ~ 9000!<br>(c) N-ds = 16 - 5/8"<br>where N = Quantity of Shear Stude<br>ds = Types of Shear Stude                                                                          |
| Using Js = 10ft and Joist depth = 14 in  Bridging Size - L 2.5 x 2.5 x 0.187 [Conservative Choice]  A. Non-Composite Effective Moment of Inertia Selection  From the Design Childre LRFD Weight Bridging Table for Composite Steel Joints, CJ-Shries-LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                                                                                                                                                                           |
| Bridging Size - L 2.5 x 2.5 x 0.187 [Conservative Choice]  A. Non-Composite Effective Moment of Inertia Selection  From the Design Childre LRFD Weight Bridging Table for Composite Steel Joints, CJ-Shies-LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             | +1 row of horizontal bridging (1H) is required                                                                                                                                                            |
| A. Non-Composite Effective Moment of Inertia Selection  From the Design anide LRFD Weight Bridging Table for Composite Steel Joints, CJ-Shries-LWC  Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                                                                                                                                           |
| Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |                                                                                                                                                                                                           |
| Using TL = 2000 PLF and Joist depth = 14 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             | + From the Design Childe LRFD Weight Bridging Table for Composite Steel Joints, CJ-Shries-LWC                                                                                                             |
| Inon-compeff = 100 in 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | Inon-compet = 108 in4                                                                                                                                                                                     |

|                                               | Tech Report III Yemi A. Ositelu                                                                                                                                                                                                                                        |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                             | DEFLECTION  ANCOL = 5 (Wnon-comported) (Design Length) 4 (1728) 384 Es Inon-comp eff                                                                                                                                                                                   |
| 5 SQUARES<br>5 SQUARES<br>5 SQUARES<br>FILLER | where Design Longth = Span - 4/12 = 19.674                                                                                                                                                                                                                             |
| 9999                                          | ANCOL = 5(.400) (19.67)4 (1728) = 0.43 in                                                                                                                                                                                                                              |
| - 50 SHEET<br>- 100 SHEET<br>- 200 SHEET      | $\Delta col = \left[ \frac{W_{comP,DL}}{W_{860}} \right] \left[ \frac{L}{360} \right] = \left[ \frac{230}{1384} \right] \left[ \frac{19.67 \times 12}{360} \right] = 0.11 \text{ in}$                                                                                  |
| 3-0236<br>3-0236<br>3-0237                    | $\Delta_{CLL} = \left[ \frac{W_{CRIMP LL}}{W_{360}} \right] \left[ \frac{L}{360} \right] = \left[ \frac{780}{1364} \right] \left[ \frac{19.67 k / 2}{360} \right] = 0.37 in$                                                                                           |
| COMET                                         | $\Delta TL = \Delta Non-composite DL + \Delta composite DL + \Delta composite LL  \Delta TL = 0.43 \text{ in } + 0.11 \text{ in } + 0.37 \text{ in } = 0.91 \text{ m}$                                                                                                 |
|                                               | CAMBER Camber joist for 100% × A NOW-COMPOSITE DL + 50% × A COMPOSITE DL + 40% × A COMPOSITE DL                                                                                                                                                                        |
| -2                                            | Joist Camper = 1.0 x 0.43 + 0.5 x 0.11 + 0.1 x 0.37 = 0.52tn                                                                                                                                                                                                           |
|                                               | EFFECTIVE MOMENT OF INFRIA SELECTION                                                                                                                                                                                                                                   |
|                                               | > From the Design Quide LRFD Weight Table for Composite Steel Joists, W-Sovies - LWC                                                                                                                                                                                   |
|                                               | Using TL = 2000 PLF and 14 in joist depth                                                                                                                                                                                                                              |
|                                               | -> left = 258 mg                                                                                                                                                                                                                                                       |
| 0                                             | Note: the published value of W300 takes into account the reductions in the effective transformed moment of mention associated with web deformations and intenfacial slipinge. Hence, left has been reduced be an assumed factor of 1.05 to account for these behaviors |
|                                               | = 1e, composite without supage = 1.05 leff = 1.05 x 258 in4                                                                                                                                                                                                            |

|                                                    | Tech Report II Yemi A. Ositelu                                                                                                                                                  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | DESIGN SUMMARY                                                                                                                                                                  |
|                                                    | The composite steel Joist Used is 14CJ 2004/1248/276                                                                                                                            |
| 0 00 00                                            | Designations  14 - Depth (in) CJ - Composite Joist Series                                                                                                                       |
| 6 SQUARES<br>5 SQUARES<br>FILLER                   | CJ - Composite Joist Series 3:000 - Total Factored Composite Design Local (PLF)                                                                                                 |
|                                                    | CJ — Composite Joist Series  2004 — Total Factored Composite Design Load (PLF)  1268 — Total Factored Composite Live Load (PLF)  276 — Total Factored Composite Dead Load (PLF) |
| 6 - 100 SHEETS<br>7 - 200 SHEETS<br>7 - 200 SHEETS | BRIDGING<br>Use 1 now of 2 L's 25 x 25 x 0.197                                                                                                                                  |
| 3-0236<br>3-0287<br>3-0137                         | JOIST WI = 13.6 PLF                                                                                                                                                             |
| COMET                                              | DEFLECTIONS  Appen-composite DL = 0.43in                                                                                                                                        |
|                                                    | Acomposite DL = 0-11 m                                                                                                                                                          |
|                                                    | Acomposite LL = 0.37 in                                                                                                                                                         |
|                                                    | CAMBER = 0.52 in                                                                                                                                                                |
|                                                    | QUANTITY AND TYPE OF SHEAR STUDS                                                                                                                                                |
|                                                    | N - ds = 16 - 5/8"                                                                                                                                                              |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                 |





# ALTERNATIVE SYSTEM #3: NON-COMPOSITE WIDE FLANGE STEEL FRAME ON COMPOSITE DECK

The final alternative system was the design of a non-composite steel frame consisting of wide-flange members, which was evaluated for a  $20'-0" \times 21'-3"$  typical bay. The original structural slab + deck of 3 %" lightweight concrete over  $2" \times 18$  gage metal deck (total structural slab depth = 5 %").

**NOTE**: The non-composite system was designed without considering the mechanical duct, which had to be passed through some members. This resulted in deeper and heavier wide flange shapes, thus increasing the weight of the system.

#### Advantages

- o Lightweight system
- o Works well with various lateral systems

# Disadvantages

- o Large overall depth
- o Requires additional fire protection
- o Expensive to construct



|                                        | Tech Report III Yenri A - Ositella                                                                           |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                                        | CALCULATIONS FOR INFILL BEAM                                                                                 |  |
|                                        | Live Load Reduction: L = 100x 0.5<br>0.25 + 15/2×425 \$ 0.764                                                |  |
| AES<br>AES                             |                                                                                                              |  |
| 5 SQUARES<br>FILLER                    | ⇒ 100 x 0.764 = 76 4 PSF = LL<br>DL = 42 + 5 + 23 = 70 PSF                                                   |  |
|                                        | Wu = 1.2 DL + 1.6 LL = [1.2(70) + 1.6(76.4)]10 = 2.06 KLF                                                    |  |
| 100 BHEETS<br>200 SHEETS<br>200 SHEETS |                                                                                                              |  |
| 111                                    | Mu = 2-06 × 21-252 = 116-3 ft K                                                                              |  |
| 3-0236<br>3-0257<br>3-0137             | Vu = 2.06 x 21.25 = 21.9 K                                                                                   |  |
| <u> </u>                               | The CK Bending                                                                                               |  |
| COMET                                  | Using Zx tables (Table 3-2); Try W14x22                                                                      |  |
|                                        | Omp = 125/4k > Mu = 116.3 4K                                                                                 |  |
|                                        |                                                                                                              |  |
|                                        | Queck Shear Qv Unx = 94.5 K > Vn = 21.9 K                                                                    |  |
|                                        | Check Deflection Ix 2 199mt                                                                                  |  |
|                                        | $\Delta LL = \frac{5 W_{1} L^{4}}{584 EIx} = \frac{L}{360} = \frac{21.25 \times 12}{360} = 0.71$             |  |
|                                        | = 5 x . 764 x 21.254 x 1728 = 0.607 < 0.71 ~ 900D                                                            |  |
|                                        | Apr. wet cove = 5 WDL L+ < 1 = 0.71                                                                          |  |
|                                        | Δρι. wet cove = 5 Wbi Lt < 1 = 0.71<br>= 5 × 0.47 × 21.25 4 × 1728 = 0.37 < 0.71 / 4000<br>384 × 29000 × 199 |  |
|                                        | ATL = 1.06 , 0.607 < 1.06 / 4000                                                                             |  |
|                                        | Check Beam Wt. Assumptions:                                                                                  |  |
|                                        | Weight = 22/10 = 2-2 PSF < 5 PSF \ GOOD                                                                      |  |
|                                        | - USE WIA x 22 INFILL BEAWS SPACED AT 10'-0" - 5                                                             |  |

|                                                                       | Tech-Report II Yemi A. Ositelu.                                                                                         |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                       | CALCULATIONS FOR INTERIOR GIRDER Assumed and wt  Span = 20'-0" DL = 42+23+2.2+2 = 69.2                                  |
| 888                                                                   | Span = 20'-0" DL = 42+23+2.2+2 = 69.2<br>LL = 76.4 PS = [ Reduced]  Pu = [1.2 (69.2) + 1.6 (76.4)] 10'x 21.25' = 43.6 K |
| ETS — 8 SQUARES<br>ETS — 5 SQUARES<br>ETS — 5 SQUARES<br>ETS — FILLER | 1 A 201-0" A                                                                                                            |
| - 50 SHE<br>- 200 SHE<br>- 200 SHE                                    | Vu = P=/2 = 21.8K Mmax= P-L = 218.0ft K                                                                                 |
| 3-0235<br>3-0235<br>8-0237<br>3-0137                                  | Oheck Bending                                                                                                           |
| COMET                                                                 | Using Zx tables (Table 3-2), Try WIBX 35 f  OMn = 249 ftk > Mu = 218.0 ftk ~ 4000                                       |
|                                                                       | Check Deflection Ix = 510 m f  ALL = PC3 = 0.764 x 21.25 x 203 x 1728 = 0.316m  48 FI 48 x 29000 x 570 m f              |
|                                                                       | $0.316 < \frac{L}{360} = 0.67 \text{m}                                   $                                              |
| 5.                                                                    | DOL, WETCOME = 0.462 x 21.25 x 20° x 1728 = 0.19m < 1 48 x 29000 x 510                                                  |
|                                                                       | DTL: 0.316 < 4/240 /4000                                                                                                |
|                                                                       | Check Gorden Weight Assumption                                                                                          |
|                                                                       | Weight of Girder = 35/2125 = 1.69795 = CZBF C GDDi                                                                      |
|                                                                       |                                                                                                                         |
| 0                                                                     |                                                                                                                         |
| +                                                                     |                                                                                                                         |
|                                                                       |                                                                                                                         |

|                                               | Tech Report III Yemi A. Osikelu                                                                            |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                               | CALCULATIONS FOR EXTERIOR GIRDER                                                                           |
|                                               | Span = $20'-0''$ DL = $69.2$ PSF + Distributed Wall Lord LL = $100$ PSF                                    |
| AHES<br>AHES                                  | Wall Lord = 436 PLF x 1.2 = 0.523 KLF = Wu                                                                 |
| 5 SOUARES<br>5 SOUARES<br>6 SOUARES<br>FILLER | . Pu = [1-2(69.2) + 1-6(100)] x 10 x 10.625 = 25.8 K                                                       |
| 16678<br>16678<br>16678                       | Through Superposition,                                                                                     |
| 200 de    | Ph= 25-8K 0.523KLK                                                                                         |
| 9-0239<br>9-0237<br>3-0137                    | A A T. A A                                                                                                 |
| L .                                           | Vu = 25-8 = 12-9k Vu = 0.523 x 20 = 5.23/2                                                                 |
| COMET                                         | Mu = 25.8 × 20 = 129 × gt Mu = 0.523 × 202 = 26.15 gt k                                                    |
| 0                                             | Mu, to+ = 129 + 26.15 = 155.1 ft/c                                                                         |
|                                               | Check Bending                                                                                              |
|                                               | Using Zx tables (Table 3-2), Try W14 x 30                                                                  |
| 14                                            | Onen = 177ftk > Mui = 155-29ft                                                                             |
|                                               | Check Deflection, Ix = 291 m =                                                                             |
|                                               | ALL = P13 C 1 = 0.67                                                                                       |
|                                               | = 1 x 10 x 10.625 x 20° x 1728 = 0.36 m < 0.67 m / 0000                                                    |
|                                               | $\Delta p_{\text{cymerconc}} = \frac{p_{\text{bl}} l^3}{48 \pm 1} + \frac{5 w_{\text{bl}} l^4}{384 \pm 1}$ |
|                                               | - 0.462 x 10.625 x 202 x 1728 + 5 x 0.43 6 x 204 x 1728<br>48 x 29000 x 291 + 0.186 x 29000 x 291          |
|                                               | Apr., wet cove = 0.353m < 0.67m                                                                            |
|                                               |                                                                                                            |



# **SYSTEM COMPARISONS**

| Criteria                 | Existing<br>Composite<br>Steel Framing | Reinforced Two-<br>Way Flat Slab | Structural Steel<br>Frame W/<br>Composite Joists | Non-Composite<br>Structural Steel<br>Frame |
|--------------------------|----------------------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------|
| Weight (PSF)             | 57.8                                   | 87.5                             | 43.2                                             | 53.1                                       |
| Cost/SF                  | 24.5                                   | 13.58                            | 15.8                                             | 21.9                                       |
| Depth (in)               | 23.25                                  | 16                               | 18.5                                             | 23.25                                      |
| Constructability         | Medium                                 | Medium                           | Easy                                             | Medium                                     |
| Fire Protection          | NO                                     | NO                               | NO                                               | NO                                         |
| Fire Rating              | 2 HR                                   | 2 HR                             | 2 HR                                             | 2 HR                                       |
| Future<br>Considerations |                                        |                                  |                                                  |                                            |
| Lateral System<br>Impact | N/A                                    | YES                              | YES                                              | YES                                        |
| Additional<br>Study Rqd? | N/A                                    | YES                              | YES                                              | NO                                         |
| Possible<br>Alternative  | N/A                                    | YES                              | YES                                              | NO                                         |

|                          | Tech Report III Yem; A. Ositela<br>SYSTEM COMPARISON [WEIGHT CALCULATION]                                            |    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|----|
|                          | EXISTING COMPOSITE STEEL                                                                                             |    |
| 6 SCUARES<br>FILLER      | Deck = 42 PSF; Beams: 3PSF + 2-2PSF + 5PSF = 10-2 PSF<br>Gordens: 2.35PSF + 3-29PSF = 5-6 PSF<br>TOTAL WT = 57.8 PSF | 3  |
|                          | REINFORCED TWO-WAY FLAT SLAB                                                                                         |    |
| 200 SHEETS<br>200 SHEETS | SLAB: 150 x 7/12 = 187.5 PSF                                                                                         |    |
| 9-0287 —                 | STRUCTURAL STEEL FRAME W/ COMPOSITE JOISTS                                                                           |    |
| 0.01                     | Deck: 35 PSF JOISTS: 1.36 x 3 = 4.08 PSF<br>Girden: 2.6 PSF + 1.55 = 4.15 PSF<br>TOTAL WT = 43.2 PSF                 |    |
|                          |                                                                                                                      |    |
|                          | NON- COMPOSITE WIDE PLANGE STEEL *RAWE                                                                               |    |
|                          | Deck: 42PSF Beams: 2.2 x 3 = 6.6PSF  TOTAL WT = 53.1PSF  TOTAL WT = 53.1PSF                                          |    |
|                          |                                                                                                                      |    |
|                          |                                                                                                                      |    |
|                          |                                                                                                                      | 10 |
|                          |                                                                                                                      |    |
| -                        |                                                                                                                      |    |
|                          |                                                                                                                      |    |
|                          |                                                                                                                      |    |
|                          |                                                                                                                      |    |
|                          |                                                                                                                      |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tech Report II Yemi A. Ositelu                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COST ANALMSIS [RS MEANS ASSEMBLIFS COST DATA]  EXISTING SYSTEM                                          |  |
| - 5 SQUARES<br>- 6 SQUARES<br>- 5 SQUARES<br>- FILLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W Shape, Composite Deck and Slab, 20x20 Bay  TL = 477PSF Cost = \$24.5/sqft  REINFORCED 2-WAY FLAT SLAB |  |
| - 50 SHEETS 200 SHEETS - 200 SHEETS - 200 SHEETS 200 SHEET | Cast-in-Place Flat Slab, 20 x 20 Bay Slab th: 7 in  Cost = \$13 58/39 st                                |  |
| 8-0236<br>9-0237<br>9-0137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STRUCTHEAL STEEL FRAME W/ COMPOSITE JOINTS                                                              |  |
| COMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Steel Joicks, Beams and Slab on Columns<br>20x 20 Bay, TL = 219 PSF<br>Cost = \$15 8/39 P4              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NON-COMPOSITE STRUCTURAL STEEL FRAME                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W Shape, composite Declt, 20x20 Bay, TL = 126PSF Cost = \$21.90/5984                                    |  |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |  |