

WASHINGTON, DC

YEMI OSITELU | STRUCTURAL OPTION ADVISER | DR. ALY SAID

BUILDING INFORMATION

EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
DESIGN IMPLICATIONS
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

BUILDING INFORMATION

YEMI A. OSITELU

GENERAL INFORMATION

BUILDING INTRODUCTION --GENERAL INFORMATION

--PROJECT TEAM

QUESTIONS

--ARCHITECTURE & SYSTEMS OVERVIEW **EXISTING CONDITIONS** THESIS PROPOSAL & GOALS STRUCTURAL REDESIGN DESIGN IMPLICATIONS MECHANICAL BREADTH EVALUATION CONCLUSIONS

- ❖ MIXED-USE BUILDING (OFFICE + RETAIL)
 - ROOFTOP TERRACE, FITNESS FACILITY, CONFERENCE ROOM
- ◆ 10 STORIES + 2 BELOW-GRADE PARKING LEVELS+ A MECHANICAL PENTHOUSE [(FLOOR TO FLOOR HEIGHTS – 10.33 FEET (TYP.)]
- ❖ 142,000 GSF
- ❖ ORIGINAL CONSTRUCTION COMPLETED 1982 (7 STORIES)
 - ❖ RENOVATION COMPLETED IN 2013
 - ❖ RENOVATION COST \$20,000,000

SITE LOCATION

SITE PLAN

YEMI A. OSITELU

PROJECT TEAM

BUILDING INFORMATION

- --GENERAL INFORMATION
- --PROJECT TEAM
- --ARCHITECTURE & SYSTEMS OVERVIEW
 EXISTING CONDITIONS
 THESIS PROPOSAL & GOALS
 STRUCTURAL REDESIGN
 MECHANICAL BREADTH
 EVALUATION
 CONCLUSIONS
 QUESTIONS

- ❖ ARCHITECTURE FOX ARCHITECTS
- ❖ STRUCTURAL ENGINEER RATHGEBER/GOSS ASSOCIATES
- ❖ CM SIGAL CONSTRUCTION

SITE LOCATION .

SITE PLAN

YEMI A. OSITELU

ARCHITECTURE & SYSTEMS OVERVIEW

BUILDING INFORMATION

- --GENERAL INFORMATION
- --PROJECT TEAM
- --ARCHITECTURE & SYSTEMS OVERVIEW

EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

- ❖ GREEN ROOF
- ❖ DEDICATED OUTDDOR AIR SYSTEM (DOAS)
- ❖ SUSTAINABLE CONSTRUCTION
- ❖ CONVENIENT TO PUBLIC TRANSPORTATION
- ❖ TARGETING LEED PLATINUM CERTIFICATION

SITE LOCATION

SITE PLAN

YEMI A. OSITELU

BUILDING INFORMATION

EXISTING CONDITIONS

THESIS PROPOSAL & GOALS

STRUCTURAL REDESIGN

MECHANICAL BREADTH

EVALUATION

CONCLUSIONS

QUESTIONS

EXISTING CONDITONS

YEMI A. OSITELU

EXISTING GRAVITY SYSTEM

BUILDING INFORMATION

- -LATERAL SYSTEM
- THESIS PROPOSAL & GOALS
- STRUCTURAL REDESIGN
- **DESIGN IMPLICATIONS**
- MECHANICAL BREADTH
- **EVALUATION**
- CONCLUSIONS
- QUESTIONS

- ❖ STEEL-REINFORCED, POURED-IN- PLACE CONCRETE FLOORS (1-8) W/ EDGE BEAMS
 - ❖ SLAB THICKENESS 7.25 INCHES (TYPICAL)
 - ❖ EDGE BEAMS 12 INCHES X 16 INCHES
- ❖ COMPOSITE STEEL FLOOR (9 AND ABOVE)
 - ◆ 2 INCH DEEP X 18 GAGE COMPOSITE METAL DECK
 - ❖ 3 ¼" LIGHTWEIGHT CONCRETE (TOTAL 5.25 INCHES)
 - ❖ ¾ INCH DIA. X 4 INCH SHEAR CONNECTORS
 - ♦ 6X6 W2.0X2.0 WWF

COMPRESSIVE STRENGTH – 3000 PSI (FOR CONCRETE TOPPINGS) 4000 PSI (SLABS)

CONCRETE FLOORS

♦ 440 FIRST STREET, NW

EXISTING GRAVITY SYSTEM

BUILDING INFORMATION

EXISTING CONDITIONS

-- CRAVITY SYSTEM

--GRAVITY SYSTEM
--LATERAL SYSTEM
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

COLUMNS ALONG
GRIDLINE REMOVED

BEAMS – W10X33 (12) GIRDERS – W18X35(12) COLUMNS –W12X96 (TYP.)

TYPICAL BAY (STEEL)

YEMLA. OSITE

EXISTING LATERAL SYSTEM

BUILDING INFORMATION EXISTING CONDITIONS

--GRAVITY SYSTEM

--LATERAL SYSTEM

THESIS PROPOSAL & GOALS STRUCTURAL REDESIGN MECHANICAL BREADTH EVALUATION CONCLUSIONS QUESTIONS

- SLAB COLUMN FRAMES (EXISTING FLOORS)
- ❖ STEEL MOMENT FRAMES, 2 IN EACH DIRECTION
- MINOR IMPACT ON THE ARCHITECTURAL LAYOUT
- COR AND COM RELATIVELY CLOSE

YEMI A. OSITELU

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

THESIS PROPOSAL & GOALS

YEMI A. OSITELU

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
--PROBLEM STATEMENT & THESIS PROPOSAL
--DESIGN GOALS & CRITERIA
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

PROBLEM STATEMENT

- ❖ BUILDING HAS NO EVIDENT PROBLEMS
- * REDESIGN BUILDING IN STEEL
- CONSIDER IMPACTS ON
 - * ARCHITECTURE
 - ❖ OVERALL COST

THESIS PROPOSAL

- ❖ KEEP BAY SIZES UNIFORM ACROSS ALL LEVELS
- ❖ DESIGN OFFICE/RETAIL LEVELS USING COMPOSITE STEEL JOISTS
- ❖ COMPARE OVERALL COST OF PROJECT

YEMI A. OSITELU

DESIGN GOALS

DESIGN CRITERIA

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
--PROBLEM STATEMENT & THESIS PROPOSAL
--DESIGN GOALS & CRITERIA
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS

QUESTIONS

- ❖ DESIGN AN ALTERNATIVE USING LIGHTWEIGHT STRUCTURAL STEEL
- ❖ PROVIDE A SOLUTION THAT DOES NOT INTERFERE WITH THE EXISTING ARCHITECTURAL LAYOUT
- ❖ EVALUATE THE SYSTEM BASED ON ITS COST

- NONE OF THE STEEL MOMENT FRAMES WERE SEISMICALLY DETAILED (R = 3) TO REDUCE COST
- ALL WIND LOAD CASES ARE TAKEN INTO ACCOUNT FOR THE DESIGN
- ❖ THERE ARE NO HORIZONTAL OR VERTICAL IRREGULARITIES
- THE LATERAL RESISTING SYSTEM HAS A REDUNDANCY FACTOR GREATER THAN 1, WHICH IS APPROPRIATE FOR BUILDING STRUCTURES OF SDC = A

YEMI A. OSITELU

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

YEMI A. OSITELU

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
--DESIGN EVOLUTION (GRAVITY)
--DESIGN EVOLUTION (LATERAL)
--MODELING PROCEDURE
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS

QUESTIONS

DESIGN EVOLUTION – GRAVITY SYSTEM

- ❖ COMPOSITE STEEL JOIST FRAME
 - ❖ 12 INCH JOISTS (TYP.), 18 INCHES IN LONGER SPAN AREAS
 - SPACED AT 4 FEET O.C. (TYP.)
- ❖ 2VLI20 VULCRAFT DECK
 - ❖ CONCRETE SLAB 2.5 INCHES THICK
 - ❖ TOTAL SLAB THICKENESS 4.5 INCHES
 - ❖ REINFORCED WITH 6X6 W2.0X2.0 WWF

ADVANTAGES

- COST-EFFECTIVE
- LIGHTWEIGHT
- EASY & FAST INSTALLATION
- ENVIRONMENTALLLY FRIENDLY

פר	RESIDENTIAL	COMMERCIAL
₹Ž	Total load = 112 psf	Total load = 152 psf
P.C	Live Load = 55 psf	Live Load = 95 psf
TYPICAL	NC Dead Load = 42 psf	NC Dead Load = 42 psf
	Comp Dead Load = 15 psf	Comp Dead Load = 15 psf
Depth	Length	Length
10"	25'-0"	25'-0"
12"	30'-0"	30'-0"
14"	35'-0"	32'-8"
16"	40'-0"	37'-4"
18"	45'-0"	39'-0"
20"	46'-8"	43'-4"

Notes:

- E-series joists are typically spaced at 4'-0" on center.
- Shaded areas may require special chord or web members.
- Tables assume 2 1/2" concrete above deck with 3000 psi concrete strength.

DEFLECTION CRITERIA

L/360 – LIVE LOAD (UNFACTORED) L/240 – TOTAL LOAD (UNFACTORED)

YEMI A. OSITELU

DESIGN EVOLUTION – GRAVITY SYSTEM

BUILDING INFORMATION **EXISTING CONDITIONS** THESIS PROPOSAL & GOALS

STRUCTURAL REDESIGN

- --DESIGN EVOLUTION (LATERAL)
- --MODELING PROCEDURE

MECHANICAL BREADTH

EVALUATION

CONCLUSIONS QUESTIONS

- USED ON COLUMN LINES TO ADD STIFFNESS
- ❖ TYPICALLY W12X26 AND W14X30

YEMI A. OSITELU

♦ 440 FIRST STREET, NW

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
--DESIGN EVOLUTION (GRAVITY)
--DESIGN EVOLUTION (LATERAL)
--MODELING PROCEDURE
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS

QUESTIONS

DESIGN EVOLUTION – GRAVITY SYSTEM

COLUMN DESIGN

- ❖ W10X33 (INT.) , W21X93 (EXT.)
- ❖ SIZES VARY FOR LATERAL SYSTEM (W21's)
- ❖ COLUMNS SPLICED EVERY 2 FLOORS

COLUMNS
REMOVED ALONG
GRIDLINE
FOR FLOORS 9 AND
ABOVE

YEMI A. OSITELU

BUILDING INFORMATION EXISTING CONDITIONS THESIS PROPOSAL & GOALS

STRUCTURAL REDESIGN

- --DESIGN EVOLUTION (GRAVITY)
- --DESIGN EVOLUTION (LATER
- --MODELING PROCEDURE
 MECHANICAL BREADTH
 EVALUATION
- CONCLUSIONS QUESTIONS

DESIGN EVOLUTION – LATERAL SYSTEM

- SHEAR WALLS CONSIDERED, HOWEVER INEFFECTIVE
- STEEL MOMENT FRAMES
- ❖ WIND CONTROLS (CASE 1), WIND SPEED 115MPH

* NO ARCHITECTURAL CONFLICTS

YEMI A. OSITELU

BUILDING INFORMATION **EXISTING CONDITIONS** THESIS PROPOSAL & GOALS STRUCTURAL REDESIGN

-- DESIGN EVOLUTION (GRAVITY)

--MODELING PROCEDURE

MECHANICAL BREADTH

EVALUATION CONCLUSIONS QUESTIONS

DESIGN EVOLUTION – LATERAL SYSTEM

ORIGINAL LFRS LAYOUT

REDESIGN LFRS LAYOUT

DESIGN EVOLUTION – LATERAL SYSTEM

BUILDING INFORMATION EXISTING CONDITIONS THESIS PROPOSAL & GOALS

STRUCTURAL REDESIGN

- --DESIGN EVOLUTION (GRAVITY)
- --DESIGN EVOLUTION (LATERA
- --MODELING PROCEDURE

MECHANICAL BREADTH

EVALUATION

QUESTIONS

CONCLUSIONS

CENTER OF RIGIDITY

CENTER OF MASS

N - S DIRECTION (STEEL MOMENT FRAMES) - H/240 LIMIT				
STORY	hx (ft)	STORY DRIFT	ALLOWABLE DRIFT	CHECK
P.H. ROOF	18.5	0.79	0.93	OK
MAIN ROOF	10.75	0.24	0.54	OK
TENTH FLOOR	10.84	0.23	0.54	OK
NINTH FLOOR	10.75	0.27	0.54	OK
EIGHTH FLOOR	10.33	0.3	0.52	OK
SEVENTH FLOOR	10.33	0.34	0.52	OK
SIXTH FLOOR	10.33	0.38	0.52	OK
FIFTH FLOOR	10.33	0.39	0.52	OK
FOURTH FLOOR	10.33	0.43	0.52	OK
THIRD FLOOR	10.33	0.48	0.52	OK
SECOND FLOOR	15	0.68	0.75	OK

E - W	E - W DIRECTION (STEEL MOMENT FRAMES) - H/240 LIMIT					
STORY	hx (ft)	STORY DRIFT	ALLOWABLE DRIFT	CHECK		
P.H. ROOF	18.5	0.85	0.93	OK		
MAIN ROOF	10.75	0.19	0.54	OK		
TENTH FLOOR	10.84	0.25	0.54	OK		
NINTH FLOOR	10.75	0.31	0.54	OK		
EIGHTH FLOOR	10.33	0.34	0.52	OK		
SEVENTH FLOOR	10.33	0.38	0.52	OK		
SIXTH FLOOR	10.33	0.43	0.52	OK		
FIFTH FLOOR	10.33	0.44	0.52	OK		
FOURTH FLOOR	10.33	0.46	0.52	OK		
THIRD FLOOR	10.33	0.47	0.52	OK		
SECOND FLOOR	15	0.64	0.75	OK		

YEMI A. OSITELU

DESIGN EVOLUTION – LATERAL SYSTEM

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
--DESIGN EVOLUTION (GRAVITY)
--DESIGN EVOLUTION (LATERAL)
--MODELING PROCEDURE
MECHANICAL BREADTH
EVALUATION

CONCLUSIONS

QUESTIONS

YEMLA, OSITELL

DESIGN EVOLUTION – LATERAL SYSTEM

BUILDING INFORMATION **EXISTING CONDITIONS** THESIS PROPOSAL & GOALS

STRUCTURAL REDESIGN

- --DESIGN EVOLUTION (GRAVITY)
- --MODELING PROCEDURE MECHANICAL BREADTH **EVALUATION** CONCLUSIONS QUESTIONS

COLUMNS – HSS6X6X1/2 BEAMS – 14X22

- ❖ PENTHOUSE COLUMNS DON'T ALIGN
- ❖ BASES PINNED TO TAKE SHEAR AND NOT MOMENT

RAM MODELING PROCESS

BUILDING INFORMATION EXISTING CONDITIONS THESIS PROPOSAL & GOALS

STRUCTURAL REDESIGN

- --DESIGN EVOLUTION (GRAVITY)
- --DESIGN EVOLUTION (LATERAL)

MECHANICAL BREADTH **EVALUATION** CONCLUSIONS QUESTIONS

- COMPOSITE STEEL JOISTS WERE MODELED AS NON-COMPOSITE STEEL JOISTS, DUE TO THE INABILITY OF THE SOFTWARE TO ACCOUNT FOR THE COMPOSITE ACTION OF A JOIST. THE EQUIVALENT JOISTS WERE SELECTED BASED ON DEPTH.
- A RIGID DIAPHRAGM WAS ASSUMED ON EVERY LEVEL
- ACCIDENTAL AND INHERENT TORSION WERE ACCOUNTED FOR.
- IV. ALL LATERAL MEMBERS WERE FIXED AT BOTH ENDS
- V. P-DELTA EFFECTS WERE TAKEN INTO ACCOUNT.
- VI. LOAD COMBINATIONS WERE GENERATED USING IBC 2012/ASCE 7 -10

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION
CONCLUSIONS
QUESTIONS

MECHANICAL BREADTH

YEMI A. OSITELU

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH

-- DESIGN GOALS

--APPLICATION TO 440 FIRST STREET EVALUATION CONCLUSIONS QUESTIONS

USING SOLAR THERMAL ENERGY TO PREHEAT VENTILATION AIR

DESIGN GOALS

- ❖ CREATE A LINK THAT ALLOWS INTAKE AIR TO BE COLLECTED BY THE SOLAR COLLECTORS AND TRANSFERRED INTO THE BUILDING.
- ❖ DESIGN THE TRANSPIRED COLLECTORS TO BE MOUNTED ON THE ROOF.
- ❖ CHECK FEASIBILITY OF REDUCING ENERGY REQUIREMENTS OF THR BUILDING

YEMI A. OSITELU

♦ 440 FIRST STREET, NW

USING SOLAR THERMAL ENERGY TO PREHEAT VENTILATION AIR

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH

--DESIGN GOALS
--APPLICATION TO 440 FIRST STREET

EVALUATION CONCLUSIONS QUESTIONS

CALCULATIONS

$$Q_{U} = A_{C} \left[G_{T}.F_{R}(tr) - F_{R}U_{L} \left(T_{I} - T_{a} \right) \right]$$

WHERE GT – SOLAR IRRDIANCE (w/m2)

Tf – INLET FLUID TEMP. TO THE COLLECTORS

To – OUTLERT FLUID TEMP. FROM COLLECTORS

FRUL - 0.83 FR(tr) - 6.3 w/m2.c

YEMI A. OSITELU

BUILDING INFORMATION **EXISTING CONDITIONS** THESIS PROPOSAL & GOALS STRUCTURAL REDESIGN MECHANICAL BREADTH

--DESIGN GOALS

APPLICATION TO 440 FIRST STREET **EVALUATION & CONCLUSIONS**

QUESTIONS

USING SOLAR THERMAL ENERGY TO PREHEAT VENTILATION AIR

E 7: SOLAR	IRRADIANCE X OUTSOO GAIN	R AIR TEMP. X USEFUL SOLAR
OLAR Diance	OUTDOOR AIR TEMP.	USEFUL SOLAR GAIN
200	-10	-86
200	-5	-54.5
200	0	-23
200	5	8.5
200	10	40
200	15	71.5
400	-10	80
400	-5	111.5
400	0	143
400	5	174.5
400	10	206
400	15	237.5
600	-10	246
600	-5	277.5
600	0	309
600	5	340.5
600	10	372
600	15	403.5
800	-10	412
800	-5	443.5
800	0	475
800	5	506.5
800	10	538
800	15	569.5

YEMI A. OSITELU

♦ 440 FIRST STREET, NW

BUILDING INFORMATION
EXISTING CONDITIONS
THESIS PROPOSAL & GOALS
STRUCTURAL REDESIGN
MECHANICAL BREADTH
EVALUATION & CONCLUSIONS
QUESTIONS

REDESIGN EVALUATION

STRUCTRUAL REDESIGN	CHECK	
PROVIDE A LIGHTWEIGHT SOLUTION	√	
REDUCE COST	✓	
RETAIN ARCHITECTURAL LAYOUT	\checkmark	
MECHANICAL BREADTH	\checkmark	
MECHANICAL BREADTH		
CREATE SCHEMATIC OF THE SYSTEM	√	
DESIGN THE TRANSPIRED COLLECTORS	√	
COST ANALYSIS		
REDUCE OVERALL COST	√	

CONCLUSION

- ❖ LESS EXPENSIVE
 - ❖ ORIGINAL \$20.000,000
 - ❖ REDESIGN \$18,593,874 (6% SAVINGS)
- ❖ LIGHTWEIGHT STRUCTURE
 - ❖ ORINGINAL 11500 KIPS
 - ❖ REDESIGN 6500 KIPS

DESIGN FEASIBLE

YEMI A. OSITELU

<u>ACKNOWLEDGEMENTS</u>

SPECIAL THANKS TO:

JUSTIN DOMIRE, MICHEAL GOSS | RGA

JP SPICKLER | FOX ARCHITECTS

ENTIRE AE FACULTY

MY FAMILY, FRIENDS & CLASSMATES

QUESTIONS?

COMMENTS?

APPENDIXES

WIND PRESSURES & FORCES IN NORTH – SOUTH DIRECTION

		W	IND PRESSURES (N -	· S)	
HEIGHT (FT.)	Kz	qz	WINDWARD WALL (PSF)	LEEWARD WALL (PSF)	TOTAL (PSF)
127.25	1.06	30.50	20.74	-8.43	29.17
109.25	1.01	29.07	19.7	-8.43	28.13
98.5	0.99	28.49	19.4	-8.43	27.83
87.75	0.95	27.34	18.6	-8.43	27.03
77	0.92	26.48	18	-8.43	26.43
66.67	0.88	25.32	17.2	-8.43	25.63
56.33	0.84	24.17	16.4	-8.43	24.83
46	0.79	22.73	15.4	-8.43	23.83
35.67	0.73	21.01	14.2	-8.43	22.63
25.33	0.66	18.99	12.9	-8.43	21.33
15	0.57	16.40	11.2	-8.43	19.63

		SUMMARY (1	V - S)	
STORY	HEIGHT (FT.)	FORCE (K)	SHEAR (K)	MOMENT (FT-K)
PHR	127.25	45.68	0	5812.78
MR	109.25	25.28	45.96	2761.84
10	98.5	25.01	71.24	2463.49
9	87.75	24.29	96.25	2131.45
8	77	23.75	120.54	1828.75
7	66.67	23.03	144.29	1535.41
6	56.33	22.31	167.32	1256.72
5	46	21.42	189.63	985.32
4	35.67	20.34	211.05	725.53
3	25.33	19.17	231.39	485.58
2	15	25.58	250.56	383.70
			276.14	20370.56

WIND PRESSURES & FORCES IN EAST-WEST DIRECTION

		V	WIND PRESSURES (E - W)		
HEIGHT (FT.)	Kz	qz	WINDWARD WALL (PSF)	LEEWARD WALL (PSF)	TOTAL (PSF)
127.25	1.06	30.50	20.7	-12.9	33.6
109.25	1.01	29.07	19.7	-12.9	32.6
98.5	0.99	28.49	19.4	-12.9	32.3
87.75	0.95	27.34	18.6	-12.9	31.5
77	0.92	26.48	18	-12.9	30.9
66.67	0.88	25.32	17.2	-12.9	30.1
56.33	0.84	24.17	16.4	-12.9	29.3
46	0.79	22.73	15.4	-12.9	28.3
35.67	0.73	21.01	14.2	-12.9	27.1
25.33	0.66	18.99	12.9	-12.9	25.8
15	0.57	16.40	11.2	-12.9	24.1

		SUMMARY (E	- W)	
STORY	HEIGHT (FT.)	FORCE (K)	SHEAR (K)	MOMENT (FT-K)
PHR	127.25	96.92	0	12333.07
MR	109.25	53.9	96.92	5888.58
10	98.5	53.4	150.82	5259.90
9	87.75	52.1	204.22	4571.78
8	77	51.2	256.32	3942.40
7	66.67	49.83	307.52	3322.17
6	56.33	48.5	357.35	2732.01
5	46	46.85	405.85	2155.10
4	35.67	44.86	452.7	1600.16
3	25.33	42.71	497.56	1081.84
2	15	57.93	540.27	868.95
			598.2	43755.94

APPENDIXES

STRUCTURAL COST INFORMATION

	ECOSPA	N COMPOSITE JO	ISTS TAKEOFF	
SIZE	FLOOR	FLOOR AREA	COST/SF	COST
	PHR	4567	1.2	5480.4
	MR	6171	1.2	7405.2
	10	6171	1.2	7405.2
	9	6171	1.2	7405.2
	8	12765	1.2	15318
12" EJ	7	12765	1.2	15318
	6	12765	1.2	15318
	5	12765	1.2	15318
	4	12765	1.2	15318
	3	12765	1.2	15318
	2	12765	1.2	15318
				134922
	MR	6594	1.2	7912.8
18	10	6594	1.2	7912.8
	9	6594	1.2	7912.8
				23738.4

	BEAM TA	KEOFF	
SIZE	LENGTH (FT.)	COST/FT.	COST
W8X10	1272	9.17	11664.24
W12x26	7057	21.45	151372.65
W10x30	1075	26.4	28380
W14X30	1570	31.35	49219.5
W14X43	756	37.84	28607.04
W14X74	529	72.8	38511.2
W24X94	157	86.7	13611.9
			321366.53

COLUMN TAKEOFF					
SIZE	LENGTH (FT.)	COST/FT.	COST		
W10X33	2210.4	19.67	43478.568		
W21X93	2512.75	68.9	173128.475		
HSS6X6X1/2	647.5	29.1	18842.25		
			235449.293		

CONCRETE TAKEOFF						
FLOOR	AREA	THICKNESS	VOLUME	COST/YD3.	COST	
MAIN ROOF	14253	0.208	109.80	90	9882.08	
10TH	14253	0.208	109.80	90	9882.08	
9TH	14253	0.208	109.80	90	9882.08	
8TH	14253	0.208	109.80	90	9882.08	
7TH	14253	0.208	109.80	90	9882.08	
HT6	14253	0.208	109.80	90	9882.08	
5TH	14253	0.208	109.80	90	9882.08	
4TH	14253	0.208	109.80	90	9882.08	
3RD	14253	0.208	109.80	90	9882.08	
2ND	14253	0.208	109.80	90	9882.08	
					98820.8	

STEEL DECK TAKEOFF						
FLOOR	AREA	COST/SF.	COST			
P.ROOF	4567	1.15	5252.05			
MAIN ROOF	14253	2.5	35632.5			
10TH	14253	2.5	35632.5			
9TH	14253	2.5	35632.5			
8TH	14253	2.5	35632.5			
7TH	14253	2.5	35632.5			
6TH	14253	2.5	35632.5			
5TH	14253	2.5	35632.5			
4TH	14253	2.5	35632.5			
3RD	14253	2.5	35632.5			
2ND	14253	2.5	35632.5			
			361577.05			